PRELIMINARY STORMWATER MANAGEMENT REPORT

Northwest Gateway Center
1400-1500 W. Dundee Rd.
Arlington Heights, IL 60004

Prepared For:
Ridgeline Property Group
Ben Harris
2015 Spring Road, Suite 235
Oak Brook, IL 60523

Prepared By:
Pinnacle Engineering Group
Jana Bryant, P.E.
1051 E. Main Street, Suite 217
East Dundee, IL 60118
847-551-5300
jbryant@pinnacle-engr.com
PEG Job No. 2283.00-IL
Dated: April 8, 2021

TABLE OF CONTENTS
SECTION 1: INTRODUCTION \& SITE LOCATION 1
SECTION 2: EXISTING CONDITIONS 1
2.1 Site History 1
2.1.1 MWRD Permit History 1
2.2 MWRD Watershed 2
2.3 Existing Drainage Conditions 2
2.4 Soil Types 3
2.5 Weighted Curve Number 3
2.6 Wetlands 3
2.7 Floodplain 3
SECTION 3: SECTION 3: PROPOSED CONDITIONS 4
3.1 Proposed Drainage Conditions 4
3.2 Additional Tributary Areas 4
3.3 Proposed Conditions Weighted Curve Number 4
3.4 Site Rate Control 5
3.4.1 MWRD 5
3.4.2 Village of Arlington Heights 5
3.5 Proposed Detention Basins 5
3.5.1 Introduction. 5
3.5.2 Existing Detention Tank 5
3.5.3 Provided Detention for Development Area 5
3.6 Site Runoff Requirements 6
3.7 Volume Control 7
3.8 Storm Sewer Calculations 7
3.9 Regulatory Floodplain Fill/Compensatory Storage 7
3.10 Qualified Sewer Construction PE Calculation. 7
SECTION 4: SUMMARY 7
APPENDICES 8
Appendix A - Site Location Map A
Appendix B - MWRD Stormwater Inundation Map B
Appendix C - Floods in Lake Zurich Quadrangle, IL (Hydrologic Investigations Atlas HA-208) and C
Floods in Wheeling Quadrangle, IL (Hydrologic Investigations Atlas HA-71) C
Appendix D - NRCS Soil Survey D
Appendix E - National Wetlands Inventory E
Appendix F - Flood Insurance Rate Map (FIRM)ette (Based on Panel No. 17031C0063J) F
Appendix G - Stormwater Drainage Exhibit G
Appendix H - Stormwater Calculations H
Appendix H. 1 - 2009-217 Stormwater Calculations: Total Area H
Appendix H. 2 - MWRD Stormwater Calculations H
Appendix H. 3 -Arlington Heights Stormwater Calculations. H
Appendix I - Volume Control Calculations 1
(To be provided in Final Stormwater Management Report)

SECTION 1: INTRODUCTION \& SITE LOCATION

This report was prepared to evaluate the existing drainage conditions and proposed stormwater management design for the site redevelopment at the property located at 1400-1500 W. Dundee Road in Arlington Heights, Illinois. The onsite development area is approximately 33.58 acres and the offsite future development area is 2.38 acres. See location map in Appendix A.

A Watershed Management Permit is required as the proposed development property holdings are over 36 acres in size requiring stormwater requirements (site runoff, volume control and detention). In addition, the owner proposes a qualified sewer construction (sanitary sewer) for a non-residential use. The site has an existing detention vault located under a section of the parking lot along the north property line. The Village of Arlington Heights has a more restrictive allowable release rate than the MWRD allowable release rate, therefore, both calculations will be provided for comparison, and the more restrictive volume will be provided.

SECTION 2: EXISTING CONDITIONS

2.1 Site History

The existing property contains a Lexus dealership, a Nissan dealership and two industrial buildings connected by an aerial walkway. The development area contains the industrial buildings and portions of the parking areas, refer to the location map in Appendix A for the approximate boundary of the development area. Development at the site began in the early 1970s, the MWRD permits for the area are summarized below.

2.1.1 MWRD Permit History

- 1970-984
- Initial Development of property, including main Honeywell building and a smaller building to the west
- Detention not required prior to January 1, 1972
- Compensatory storage provided by excavation
- 1978-649 PI
- Addition to the west building
- Added 3.39 acres of additional impervious area to site's existing 25 acres of impervious area for a total of 28.39
- Detention volume required for new impervious area only
- Allowable release rate 0.15 * 3 yr rainfall intensity ($1.21281 \mathrm{in} / \mathrm{hr}$) * site area (ac) $=13.6441$
- Compensatory storage required of 1.38 ac-ft
- 99-065
- Development of Curtiss-Wright property (3602 Kennicott Ave.)
- Site is 5.45 acres and includes detention pond that serves the property
- MWRD Allowable release rate 0.15×3-year storm intensity ($1.47 \mathrm{in} / \mathrm{hr}$) \times site area (ac) $=1.20 \mathrm{cfs}$
- Arlington Heights allowable release rate $=0.18 \mathrm{cfs} /$ acre $\times 5.45$ acres $=0.981 \mathrm{cfs}-$ More restrictive, therefore village release rate was used
- 06-291
- Development of Nissan building
- Detention provided on west side of site using a detention pond
- MWRD Allowable release rate 0.15×3-year storm intensity ($1.49 \mathrm{in} / \mathrm{hr}$) x site area $=11.84 \mathrm{cfs}$
- Arlington Heights Allowable $=0.18$ cfs/acre
- Upstream area (Curtiss-Wright) $=5.45$ acres (Curtiss-Wright property)
- Interim detention facility on north side of site
- Required 11.82 ac-ft of compensatory storage for filling BFE at a 1 to 1 ratio
- LOMR submitted to FEMA, Village of Arlington Heights requested to maintain BFE of 713.0
- 09-217
- Addition to west building (Lexus) and two proposed buildings in the northwest corner of the site.
- Detention provided in underground vault
- MWRD Allowable Release Rate $=0.15 \times 3$-year storm intensity ($1.49 \mathrm{in} / \mathrm{hr}$) $\times 52.98$ acres $=11.84$ cfs
- Outlet is controlled by 13.00 -inch steel plate restrictor

$\begin{aligned} & \text { Permit } \\ & \text { No } \end{aligned}$	Size of Site (ac)	Project Area (ac)	Release Rate Information			Detention Volume Information		
			MWRD Allowable (cfs)	Arlington Heights Allowable (cfs)	Designed (cfs)	MWRD Required (ac-ft)	Arlington Heights Required (ac-ft)	Provided (ac-ft)
70-984	75	75	N/A	N/A	N/A	N/A	N/A	N/A
78-649	63	63	1.38	N/A	1.29	0.68	N/A	0.684
99-065	59.226	5.45	1.20	0.981	0.84	1.05	2.04	2.45
06-291	52.98	6.75	$\begin{gathered} 11.84 \text { (Site)/ } \\ 1.44 \text { (Proj. Area) } \\ \hline \end{gathered}$	1.22 (Proj. Area)	5.63	19.05	--	19.24
09-217	52.98	36.037	11.84	9.54	9.46	10.888	29.33	29.57

2.2 MWRD Watershed

The site is within the Des Plaines River Watershed Planning area, which has an allowable runoffs of 0.20 cfs per acre.

2.3 Existing Drainage Conditions

Stormwater from the total site area, including the development area is captured in the existing detention tank, which was permitted under MWRD permit number 09-217.

In addition to the on-site area, drainage from the Curtiss-Wright detention basin is directed through the swale between the north edge of pavement and the north property line.

2.4 Soil Types

According to the United States Department of Agriculture - National Resources Conservation Service Web Soil Survey, the improvement area contains four soil types. The soil map symbols, descriptions, and hydrologic soil groups (HSG) are listed in Table 1 below and the Web Soil Survey is in Appendix D.

Table 1 - Soil Types Present Onsite

Map Symbol	Map Unit Name	HSG
152 A	Drummer silty clay load	B/D
223 B	Varna silt loam, 2 to 4 percent slopes	C
232 A	Ashkum silty clay loam, 0 to 2 percent slopes	C/D
290 B	Warsaw silt loam, 2 to 4 percent slopes	B
442 A	Mundelein silt loam, 0 to 2 percent slopes	B/D
805 B	Orthents, clayey, undulating	D

Note, these soil types were present prior to the original development.

2.5 Weighted Curve Number

The table below summarizes the weighted curve numbers for the existing onsite and offsite conditions.
A CN of 98 was used for all impervious surfaces and a CN of 80 (Open Space, Good Condition, hydrologic soil group D) was used for all open space turf grass.

Table 2 - Existing Conditions Weighted Curve Numbers

Area	Total Area (acres)	Impervious Area - CN 98 (acres)	Pervious Area - CN 80 (acres)	Weighted Curve Number
Development Area (onsite and offsite)	35.96	27.40	8.54	93.72

2.6 Wetlands

The National Wetlands Inventory (NWI) Map does not depict any wetlands on the development area, the NWI map does show a freshwater pond in the northwest corner of the development area and is possibly associated with the previously identified regulatory floodplain area. See Appendix \mathbf{D} for the wetlands documentation.

2.7 Floodplain

Map Numbers 17031C0044J \& 17031C0063J, effective Date 8/19/2008 show an area of Zone AE near the north property line that appears to be associated with a detention/retention basin north of the property. There is also a LOMR (09-05-1547P) for the property in question to remove floodplain from the grass area on the western part of the properties in question.

The north border of the site contains an area of "Zone AE" with a Base Flood Elevation of 713 which is determined to be a special flood hazard area and the remaining area is located in the Area of minimal flood hazard as shown on Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (Firm)ette created on 8/19/2008 and based on panel numbers 17031C0044J and 17031C0063J. See Appendix F for the firmette.

FLOOD PROTECTION AREA CERTIFICATION
THE PROPERTY IS PARITALLY LOCATED IN ZONE AE (FLOOD HAZARD AREA) AND X MINIMAL FLOOD HAZARD) PER COOK COUNTY, ILLINOIS FLOOD INSURANCE RATE MAP NOs. 17031C0044J and 17031C0063J, EFFECTIVE DATE AUGUST 19, 2008.

DATED THIS 8th DAY OF April, 2021.

SECTION 3: SECTION 3: PROPOSED CONDITIONS

This project is located in the Village of Arlington Heights, the site area is 52.98 acres, with 35.96 acres being developed (Development Area). The development area includes 33.58 acres of onsite area and 1.80 acres of offsite area. The 1.80-acre offsite area is planned to be developed as a parking lot in the future, with the detention and volume control being provided onsite within the eastern detention facility, as a condition of the selling agreement with the Lexus Dealership Property Owners. The 52.98-acres site has an existing underground detention system that was designed to provide detention for the site under the applicable regulations in 2009, which used TP-40 rainfall data. The current regulations require using Bulletin 75 (updated Bulletin 70) rainfall data. Due to the update in regulations, the required detention volume for the Development Area is greater than the provided detention volume. The difference between the required and provided detention volume for the Development Area will be provided for via two underground CMP detention systems.

3.1 Proposed Drainage Conditions

The proposed improvements include the demolition of one onsite building and development of two new buildings, along with required parking, utilities, and stormwater management systems. The existing Lexus and Nissan dealerships will not be disturbed as part of this development, except for the 2.38-acre future parking area that will be developed under a separate permit, and a small parking area adjustment to the west of the Lexus building.

3.2 Additional Tributary Areas

Please refer to the MWRD Drainage Exhibit that is provided with the project plan set for this information.

3.3 Proposed Conditions Weighted Curve Number

The calculation below summarizes the weighted curve numbers and the MWRD adjusted curve numbers for the proposed onsite and offsite conditions, based on the MWRD spreadsheet.

Table 3 - Proposed Conditions Weighted Curve Numbers

Drainage Area		Impervious Area - CN 98 (acre)	Pervious Area - CN 80 (acre)	Weighted Curve Number	Adjusted Curve Number
West Facility	West	7.08	1.95	94.11	87.60
East Facility	East	18.86	5.69	93.98	87.53
	Future Parking Lot	1.61	0.19		

See Appendix H for the associated calculations.

3.4 Site Rate Control

3.4.1 MWRD

The site is within the Des Plaines River Watershed Planning area, which has an allowable runoff of 0.20 cfs per acre. The development area, including the proposed future parking lot is 35.96 acres, therefore the allowable release rate under the MWRD regulations is 7.192 cfs.

3.4.2 Village of Arlington Heights

The Village of Arlington Heights allowable release rate is 0.18 cfs per acre.
The development area, including the proposed future parking lot is 35.96 acres, therefore the allowable release rate in under the Village of Arlington Heights regulations is 6.472 cfs .

See Appendix H for stormwater calculations.

3.5 Proposed Detention Basins

3.5.1 Introduction

In addition to the existing in-place detention vault on the north side of the site, two additional underground detention systems will be installed at the site. The systems will be made up of corrugated metal pipe and stone. The systems will be equipped with an outfall and an underdrain system. The bottom portion of the systems will provide the required MWRD volume control.

3.5.2 Existing Detention Tank

As mentioned in Section 2.1 above, detention was provided for the 52.98 -acre site via an underground storage tank under MWRD permit No. 09-217. The existing underground tank is 29.57 acre-feet and uses a pump system to discharge the stormwater from the tank to an outfall structure that features a 13 -inch orifice, which acts as a restrictor. The tank was designed to provide compensatory storage due to filling of the Base Flood Elevation of 11.82 acre-feet as well as the required storage to meet the Arlington Heights release rate of 0.18 cfs per acres, which is 9.54 cfs for the 52.98 -acre site.

3.5.3 Provided Detention for Development Area

The calculations from the 2009-217 permit prepared by Condon Consulting were recreated to set a baseline, then revised to determine detention volume provided for the proposed 2021 site.

Both the Village of Arlington Heights and MWRD calculations were evaluated to determine the required detention volume. The MWRD regulations require greater detention volume, therefore the MWRD volume was used for comparison.

The development area, including the future parking lot is 35.38 acres and has three drainage areas, the West Drainage area is 9.03 acres, the East Drainage area is 24.55 acres, and the Future Parking Lot drainage area is 1.80 acres. The West drainage area is tributary to the West Detention Facility and the East and Future Parking areas are tributary to the East Detention Facility. Each drainage area was analyzed using the 2009 baseline calculations to determine the detention volume provided for each of the drainage areas under the 2009-217 permit.

3.5.3.1 MWRD Calculations

The total required detention for each of the drainage areas were determined using the MWRD Spreadsheets. Please refer to Appendix H. 2 for calculations.

Detention Facility	Trib Area (acres)	Composite Curve Number	Adjusted Curve Number	Allowable Release Rate		Total Required Detention (ac-ft)	Existing Detention Provided (ac-ft) ${ }^{1}$	New Required Detention (ac-ft)	Provided Detention at HWL (ac-ft)
				$\begin{aligned} & \text { (cfs/ } \\ & \text { acre) } \end{aligned}$	(cfs)				
West	9.03	94.11	87.60	0.20	1.806	3.386	2.754	0.632	0.675
East	26.34	93.98	87.53	0.20	5.268	9.863	8.696	1.167	2.627
Total	35.96	--	--	0.20	7.191	13.479	11.641	1.838	3.302

Notes:
Existing Detention Provided based on calculations in permit number 2009-217 and release rate of $0.18 \mathrm{cfs} /$ acre
3.5.3.2 Village of Arlington Heights Calculations

Detention Facility	Trib Area (acres)	Runoff Factor	Allowable Release Rate		Total Required Detention (ac-ft)	Existing Detention Provided (ac-ft)	New Required Detention (ac-ft)	Provided Detention (ac-ft)
			(cfs/ acre)	(cfs)				
West	9.03	0.853	0.18	1.625	3.382	2.754	0.628	0.675
East	26.34	0.850	0.18	4.741	9.825	8.696	1.129	2.627
Total	35.96	--	0.18	6.472	13.438	11.641	1.797	3.302

See Appendix H for the associated calculations.

3.6 Site Runoff Requirements

The proposed development will have an on-site development area of 33.58 acres and an offsite area of 2.38 acres. The development will use two drainage facilities, which are referred to as the West Drainage Facility and the East Drainage Facility. The West Detention Facility serves the west drainage area and the East Detention Facility serves the east drainage area along with 2.38 acres of offsite area, which will be constructed under a separate development (Future Parking Lot). The 100-year, 24-hour runoff from the West Drainage Area will be directed to the West Underground Detention System, which is located on the northwest side of the site and the runoff from the East Drainage Area will be directed to the East Underground Detention System, which is located in the center of the site. Both the West and East Underground Detention Systems will outflow to the existing detention tank. The underground detention systems will also be equipped with underdrains, which are designed to drain the volume control portions of the systems. These underdrains will be connected to the outflow structure on the upstream end of the 13-inch restrictor.

3.7 Volume Control

MWRD standards dictate that volume control shall be provided based on a 1.0 -inch rainfall event from the impervious area. Volume control for the site will be provided via the east and west underground detention systems.

Please refer to the table below for the project's volume control information.

Drainage Area	Impervious Area (acres)	Volume Control Required (ac-ft)	Volume Control Provided (ac-ft)
West	7.08	0.59	0.675
East	20.47	1.706	1.748

3.8 Storm Sewer Calculations

The storm sewer calculations will be provided in the Final Stormwater Management Report.

3.9 Regulatory Floodplain Fill/Compensatory Storage

As required in the 2006-291 MWRD permit, the site is required to provide 11.82 acre-feet of compensatory storage. This storage volume was originally provided in the existing underground detention tank and the volume will continue to be maintained as part of this development.

3.10 Qualified Sewer Construction PE Calculation

The West Building is 205,304 square feet, it is assumed that 10% of the building is designated as office $(20,530$ square feet) and 90% of the building is designated as warehouse (184,774 square feet). The estimated gallons per day from the West Building is $11,291.7$ gallons per day, or 113 population equivalents (P.E.).

The East Building is 306,360 square feet, it is assumed that 10% of the building is designated as office (30,636 square feet) and 90% of the building is designated as warehouse (275,724 square feet). The estimated gallons per day from the West Building is $16,849.8$ gallons per day, or 168 P.E.

SECTION 4: SUMMARY

The proposed stormwater management plan meets and/or exceeds the Arlington Heights and MWRD requirements. See the attached appendices for maps and calculations supporting the proposed development.

APPENDICES

Appendix A - Site Location Map
Appendix B - MWRD Stormwater Inundation Map
Appendix C - Floods in Lake Zurich Quadrangle, IL (Hydrologic Investigations Atlas HA-208) and
Floods in Wheeling Quadrangle, IL (Hydrologic Investigations Atlas HA-71)
Appendix D - NRCS Soil Survey
Appendix E - NWI Map and Kane County ADID
Appendix F - Flood Insurance Rate Map (No. 17031C0206J)
Appendix G - Stormwater Drainage Exhibit
Appendix H - Stormwater Calculations
Appendix H. 1 - 2009-217 Stormwater Calculations: Total Area
Appendix H. 2 - MWRD Stormwater Calculations
Appendix H. 3 - Arlington Heights Stormwater Calculations
Appendix H. 4 - Existing Tank Information
Appendix H. 5 - HydroCAD Calculations
Appendix I - Storm Sewer Calculations

Appendix A - Site Location Map

(Source: Google Earth)

Appendix B - MWRD Stormwater Inundation Map

(Source: https://gispub.mwrd.org/swima/)

SIMA - A.H. Auto Mall Redev

Appendix C - Floods in Lake Zurich Quadrangle, IL (Hydrologic Investigations Atlas HA-208) and Floods in Wheeling Quadrangle, IL (Hydrologic Investigations Atlas HA-71)

(Source: United States Geological Survey)

Appendix D - NRCS Soil Survey

(Source: USDA \& NRCS)

Appendix E - National Wetlands Inventory

(Source: U.S. Fish and Wildlife Service)

Appendix F - Flood Insurance Rate Map (FIRM)ette (Based on Panel No. 17031C0063J)
(Source: Federal Emergency Management Agency, https://msc.fema.gov/portal/search?) effective date 8/19/2008

National Flood Hazard Layer FIRMette

Legend

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards
The flood hazara information is derived direcly from the authoritative NFHL web services provided by FEMA. This map
was exported on 11/16/2020 at 5:09 PM and does not was exported on $11 / 16 / 2020$ at $5: 09$ PM and does not time. The NFHL and effective information may change or become superseded by new data over time.
This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

Appendix G - Stormwater Drainage Exhibit
(Please refer to full size exhibit in the plan set)

Appendix H - Stormwater Calculations

Project:	Arlington Heights Automall Redevelopment
Project No.:	$2283.00-$ IL
Date:	$4 / 5 / 2021$

MWRD Requirements

Drainage Area Name	Area	Composite Curve Number	Adjusted Curve Number	Allowable Release Rate		Total RequiredDetention (ac-ft)	Existing Detention Provided (ac-ft)	New Required Detention		Volume Control Required	
	(acres)			(cfs/acre)	(cfs)			(CF)	(ac-ft)	CF	(ac-ft)
West	9.03	94.11	87.60	0.20	1.806	3.386	2.754	27,530	0.632	25,690	0.59
East	26.34	93.98	87.53	0.20	5.268	9.863	8.696	50,835	1.167	74,300	1.71
Total	35.37				7.074	13.249	11.45	78,364	1.799	99,990	2.30

Village of Arlington Heights Requirements (Spreadsheet)

Drainage Area Name	Area	Runoff Factor	Allowable Release Rate		Total Required Detention	Existing Detention Provided		New Required Detention	
			(cfs/acre)	(cfs)	(ac-ft)	(ac-ft)	(CF)	(ac-ft)	
	9.03	0.853	0.18	1.625	3.382	2.754	27,356	0.628	
East	26.34	0.85	0.18	4.741	9.825	8.696	49,179	1.129	
Total	35.37			6.367	$\mathbf{1 3 . 2 0 7}$	$\mathbf{1 1 . 4 5}$	$\mathbf{7 6 , 5 3 5}$	$\mathbf{1 . 7 5 7}$	

Appendix H. 1 - 2009-217 Stormwater Calculations: Total Area \& West and East Facility Tributary Areas

BOB ROHRMAN'S ARLINGTON HEIGHTS AUTOMALL				Condon Consulting Engineers, P.C.			
ROHR-07023-3				5415 Business Parkway			
DETENTION CALCULATIONS				Ringwood, IL 60072			
				7/5/2007	4/15/2008		
				1 of 1			
DETENTION TANK CALCULATIONS							
100-Year Modified Rational Method							
$\begin{array}{\|c\|} \hline \text { Proposed } \\ \text { Runoff } \\ \text { Coeff.(C) } \\ \hline \end{array}$	\qquad	$\begin{gathered} \text { Rainfall } \\ \text { Intensity I } \\ \text { for } 100 \mathrm{yr} \end{gathered}$	Area (A)	Inflow Rate $\mathrm{Qi}=\mathrm{CIA}$	Release Rate Qo	Storage Rate Qi-Qo	Storage Volume $(\mathrm{Qi}-\mathrm{Qo}) \mathrm{T}^{*} 60$
	(hr)	(IN/HR)	(acres)	(CFS)	(CFS)	(CFS)	(AC-FT)
0.89	0.08	10.92	52.98	514.90	9.49	505.41	3.342
0.89	0.17	10.02	52.98	472.47	9.49	462.98	6.505
0.89	0.25	8.2	52.98	386.65	9.49	377.16	7.793
0.89	0.5	5.6	52.98	264.05	9.49	254.56	10.519
0.89	1	3.56	52.98	167.86	9.49	158.37	13.089
0.89	2	2.24	52.98	105.62	9.49	96.13	15.889
0.89	3	1.62	52.98	76.39	9.49	66.90	16.586
0.89	6	0.95	52.98	44.79	9.49	35.30	
0.89	12	0.55	52.98	25.93	9.49	16.44	16.308
0.89	18	0.39	52.98	18.39	9.49	8.90	13.239
0.89	24	0.32	52.98	15.09	9.49	5.60	11.105
0.89	48	0.17	52.98	8.02	9.49	-1.47	-5.848
PEAK DETENTION VOLUME				17.51 AC-FT			
COMPENSATORY STORAGE REQUIRE*				$11.82 \mathrm{AC}-\mathrm{FT}$			
TOTAL REQUIRED STORAGE IN DETENTION VAULT				29.33 AC-FT			
TOTAL PROVIDED STORAGE IN DETENTION VAULT				29.57 AC-FT			
				\cdots	-		
(Per the Village of Arlington Heights) ---							

Required for Site (2009-217) - West

Proposed Runoff Coeff, C	Storm Duration Time (hr)	100-YR Rainfall Intensity, I (in/hr)	Area (ac)	Inflow Rate Qi=CIA (cfs)	Release Rate (cfs)*	Storage Rate Qi- Qo (cfs)	Storage Volume (QiQo) T*60 (ac-ft)
0.89	0.08	10.92	9.03	87.76	2.08	85.68	0.566
0.89	0.17	10.02	9.03	80.53	2.08	78.45	1.102
0.89	0.25	8.2	9.03	65.90	2.08	63.82	1.319
0.89	0.5	5.6	9.03	45.01	2.08	42.93	1.774
0.89	1	3.56	9.03	28.61	2.08	26.53	2.193
0.89	2	2.24	9.03	18.00	2.08	15.92	2.632
0.89	3	1.62	9.03	13.02	2.08	10.94	2.712
0.89	6	0.95	9.03	7.63	2.08	5.55	2.754
0.89	12	0.55	9.03	4.42	2.08	2.34	2.321
0.89	18	0.39	9.03	3.13	2.08	1.05	1.568
0.89	24	0.32	9.03	2.57	2.08	0.49	0.975
0.89	48	0.17	9.03	1.37	2.08	-0.71	-2.831

* Release rate based maximum allowable release rate per Arlington Heights ($0.18 \mathrm{cfs} / \mathrm{ac}$)

Required for Site (2009-217) - East 3.0

Proposed Runoff Coeff, C	Storm Duration Time (hr)	100-YR Rainfall Intensity, I (in/hr)	Area (ac)	Inflow Rate Qi=CIA (cfs)	Release Rate (cfs)*	Storage Rate Qi- Qo (cfs)	Storage Volume (QiQo) T*60 (ac-ft)
0.89	0.08	10.92	26.35	256.09	4.743	251.35	1.662
0.89	0.17	10.02	26.35	234.98	4.743	230.24	3.235
0.89	0.25	8.2	26.35	192.30	4.743	187.56	3.875
0.89	0.5	5.6	26.35	131.33	4.743	126.59	5.231
0.89	1	3.56	26.35	83.49	4.743	78.74	6.508
0.89	2	2.24	26.35	52.53	4.743	47.79	7.899
0.89	3	1.62	26.35	37.99	4.743	33.25	8.243
0.89	6	0.95	26.35	22.28	4.743	17.54	8.696
0.89	12	0.55	26.35	12.90	4.743	8.16	8.088
0.89	18	0.39	26.35	9.15	4.743	4.40	6.550
0.89	24	0.32	26.35	7.50	4.743	2.76	5.477
0.89	48	0.17	26.35	3.99	4.743	-0.76	-3.000

* Release rate based maximum allowable release rate per Arlington Heights ($0.18 \mathrm{cfs} / \mathrm{ac}$)

Appendix H. 2 - MWRD Stormwater Calculations

PROJECT: Arlington Heights Automall Redevelopment
PERMIT NUMBER:

DATE: \qquad
TYPE OF AREA (SELECT WITH DROP-DOWN)
___ DETAINED AREA

MAJOR STORMWATER SYSTEM

UNRESTRICTED AREA
OTHER: \qquad
UPSTREAM AREA

CONDITION (SELECT WITH DROP-DOWN)
x PROPOSED CONDITION
EXISTING CONDITION

RUNOFF CURVE NUMBER

Surface Description	Hydrologic Soil Group (HSG)	CN	Area (acres)	Product (CN)(Area)
impervious	D	98	7.08	693.84
Pervious	D	80	1.95	156.00

TOTALS: | 9.03 | 849.84 |
| :--- | :--- |

COMPOSITE RUNOFF CURVE NUMBER

$$
\text { Composite CN }=\frac{\text { Total Product }}{\text { Total Area }}=\frac{849.84}{9.03} \rightarrow \quad \text { Composite CN }=\square 94.11
$$

ADJUSTED COMPOSITE RUNOFF CURVE NUMBER (CN ${ }_{A D J}$)

PROJECT: Arlington Heights Automall Redevelopment

LOCATION: West 2.0 Drainage Area
West 2.0 Drainage Area

PERMIT NUMBER:
DATE:

9.030
7.080
94.11
0.590
8.57

RUNOFF VOLUME (NRCS EQUATIONS)

6. Maximum Retention, S
$S=\frac{1000}{C N}-10$
7. Runoff Depth, Q_{D}
$Q_{D}=\frac{(P-0.2 S)^{2}}{(P+0.8 S)}$
8. Runoff Volume, V_{R}
$V_{R}=Q_{D} A\left(\frac{1}{12 \frac{i n}{f t}}\right)$

0.63
7.86
inches
5.92

VOLUME CONTROL STORAGE
9. Volume Control Storage Required, $V C_{R}$
10. Additional Volume Control Storage Provided

ADJUSTED RUNOFF VOLUME

11. Adjusted Runoff Volume, $V_{A D J} \quad V_{A D J}=V_{R}-V C_{P}$
12. Adjusted Runoff Depth, $Q_{A D J}$
13. Adjusted Maximum Retention, $S_{A D J}$

5.326
7.08
inches
1.42
inches

ADJUSTED COMPOSITE RUNOFF CURVE NUMBER

14. Adjusted Runoff Curve Number, $C N_{A D J}$

NOMOGRAPH: BULLETIN 70 (2019)

PROJECT: Arlington Heights Automall Redevelopment
PERMIT NUMBER:

DATE: \qquad
TYPE OF AREA (SELECT WITH DROP-DOWN)
___ DETAINED AREA

MAJOR STORMWATER SYSTEM

UNRESTRICTED AREA
OTHER: \qquad
UPSTREAM AREA

CONDITION (SELECT WITH DROP-DOWN)
x PROPOSED CONDITION
EXISTING CONDITION

RUNOFF CURVE NUMBER

Surface Description	Hydrologic Soil Group (HSG)	CN	Area (acres)	Product (CN)(Area)
Impervious	D	98	20.47	2006.06
Pervious	D	80	5.88	470.40

TOTALS: | 26.35 | 2476.46 |
| :--- | :--- |

COMPOSITE RUNOFF CURVE NUMBER

$$
\text { Composite CN }=\frac{\text { Total Product }}{\text { Total Area }}=\frac{2476.46}{26.35} \rightarrow \quad \text { Composite CN }=\square 93.98
$$

ADJUSTED COMPOSITE RUNOFF CURVE NUMBER (CN ${ }_{A D J}$)
PROJECT: Arlington Heights Automall Redevelopment
PERMIT NUMBER: \qquad
LOCATION: East 3.0 Drainage Area
DATE:

DEVELOPMENT INFORMTION

1. Area Detained, A
2. Total Impervious Area
3. Composite CN
4. Volume Control Storage Provided, $V C_{P}$
5. Depth of Rainfall, P

26.340
20.470
93.98
1.706

RUNOFF VOLUME (NRCS EQUATIONS)

6. Maximum Retention, S
$S=\frac{1000}{C N}-10$
7. Runoff Depth, Q_{D}
$Q_{D}=\frac{(P-0.2 S)^{2}}{(P+0.8 S)}$
8. Runoff Volume, V_{R}

$$
V_{R}=Q_{D} A\left(\frac{1}{12 \frac{i n}{f t}}\right)
$$

0.64
7.85
17.22

VOLUME CONTROL STORAGE
9. Volume Control Storage Required, $V C_{R}$
10. Additional Volume Control Storage Provided

ADJUSTED RUNOFF VOLUME

11. Adjusted Runoff Volume, $V_{A D J} \quad V_{A D J}=V_{R}-V C_{P}$
12. Adjusted Runoff Depth, $Q_{A D J}$
13. Adjusted Maximum Retention, $S_{A D J}$

15.517
7.07
inches
1.42
inches

ADJUSTED COMPOSITE RUNOFF CURVE NUMBER

14. Adjusted Runoff Curve Number, $C N_{A D J}$

NOMOGRAPH: BULLETIN 70 (2019)

Appendix H. 3 -Arlington Heights Stormwater Calculations

Development Name
 Detention Calculation Verification: PC \#
 \qquad
 Site Requirements

West Detention Facility

Development Name
4/8/2021

Detention Calculation Verification: PC \#
 Site Requirements

\qquad

East Detention Facility

	Allowed Release Rate (Area $\times 0.18 \mathrm{cfs} / \mathrm{Ac})=$ Weighted "C" Factor =				$\begin{aligned} & 26.350 \text { Acres } \\ & 4.743 \text { cfs } \\ & 0.850 \end{aligned}$		Pervious= Impervious= Water= Synth Turf=	5.880 Acres 20.470 Acres 0.000 Acres 0.000 Acres					
A Runoff Factor	Storm Duration		D Updated Rainfall Intensity	Site Area "A" (acres)	Inflow Rate (CxIxA) (cfs)	Release Rate (cfs)	Storage Rate (cfs)	J Storage	K				
$\begin{aligned} & \text { Factor } \\ & \text { "C" } \end{aligned}$	(min)	(hrs)	Intensity "I" (in/hr)					(cu-ft)	(Ac-ft)				
0.850	5	0.083	12.34	26.350	276.39	4.743	271.64	81167	1.863				
0.850	10	0.167	10.80	26.350	241.89	4.743	237.15	142575	3.273				
0.850	15	0.25	9.26	26.350	207.40	4.743	202.66	182392	4.187				
0.850	20	0.33	7.97	26.350	178.51	4.743	173.77	206433	4.739				
0.850	30	0.50	6.34	26.350	142.00	4.743	137.26	247063	5.672				
0.850	40	0.67	5.27	26.350	118.03	4.743	113.29	273260	6.273				
0.850	50	0.83	4.52	26.350	101.24	4.743	96.49	288323	6.619				
0.850	60	1.00	4.03	26.350	90.26	4.743	85.52	307868	7.068				
0.850	90	1.50	3.03	26.350	67.86	4.743	63.12	340856	7.825				
0.850	120	2.00	2.49	26.350	55.77	4.743	51.03	367393	8.434				
0.850	180	3.00	1.83	26.350	40.99	4.743	36.24	391440	8.986				
0.850	240	4.00	1.48	26.350	33.15	4.743	28.41	409036	9.390				
0.850	300	5.00	1.25	26.350	28.00	4.743	23.25	418570	9.609				
0.850	360	6.00	1.07	26.350	23.97	4.743	19.22	415202	9.532				
0.850	420	7.00	0.97	26.350	21.73	4.743	16.98	427961	9.825				
0.850	480	8.00	0.87	26.350	19.49	4.743	14.74	424593	9.747				
0.850	540	9.00	0.79	26.350	17.69	4.743	12.95	419613	9.633				
0.850	600	10.00	0.72	26.350	16.13	4.743	11.38	409795	9.408				
0.850	660	11.00	0.67	26.350	15.01	4.743	10.26	406428	9.330				
0.850	720	12.00	0.62	26.350	13.89	4.743	9.14	394997	9.068				
0.850	1080	18.00	0.45	26.350	10.08	4.743	5.34	345765	7.938				
0.850	1440	24.00	0.36	26.350	8.06	4.743	3.32	286857	6.585				
					A*D*E		F-G	C* ${ }^{*} 3600$	J/43560				
$\begin{array}{rlrl}\text { Max Volume } & & & \\ & = & 9.825 ~ A c r e-F t ~\end{array}$													
Orifice Computation													
1) Allowed Release Rate, Q(cfs)				4.743			Free Flow	Submerged Flow					
2) High Water Elevation							-	0.00					
3) Outfall Water Elevation				-				0.00					
4) Invert Elevation								0.00					
5) Diameter of Restrictor (inch)								0					
6) Cross Section Area (sq ft)				-			0.000	0.000					
7) Head (ft)			$\mathrm{h}=$	0.00			0.00	0.00					
8) Discharge Coefficient							0.00						
Square Edge			.79-0.82	- Most common $=0.61$			$\mathrm{Q}=\mathrm{C}^{*} \mathrm{a}^{*}\left(\right.$ sqrt $\left.2^{*} \mathrm{~g}^{*} \mathrm{~h}\right)$						
Round Edge			.93-0.98										
Sharp Edge			.58-0.64										
	Projec	ng	. 50										
Orifice area: $\mathrm{a}=$		Q				Q (cfs)	0.00	0.000					
		C^{*} (sqrt 2*${ }^{*}{ }^{*}$)											
$(\mathrm{sq} \mathrm{ft})=$ \#DIV/0!			dia(in) $=$	\#DIV/0!									

Appendix H. 4 - Existing Tank Information

Appendix H. 5 - HydroCAD Calculations

West Drainage Area

Summary for Subcatchment 4S: East Drainage Area

Runoff $=18.66$ cfs @ 14.99 hrs, Volume $=16.055$ af, Depth= 7.85

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.01-360.00 \mathrm{hrs}$, dt= 0.01 hrs Huff B75 0-10sm 3Q 24.00 hrs 100-YR, 24-HR Rainfall=8.57", Smoothing=Off

Area (sf)	CN	Description
821,472	98	Paved parking, HSG D
247,756	80	$>75 \%$ Grass cover, Good, HSG D
$1,069,228$	94	Weighted Average
247,756		23.17% Pervious Area
821,472		76.83% Impervious Area

Summary for Subcatchment 5S: FutureParking Lot

Runoff = 1.38 cfs @ 14.99 hrs, Volume= 1.212 af, Depth= 8.09"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= $0.01-360.00 \mathrm{hrs}$, dt= 0.01 hrs Huff B75 0-10sm 3Q 24.00 hrs 100-YR, 24-HR Rainfall=8.57", Smoothing=Off

Area (sf)	CN	Description
70,123	98	Paved parking, HSG D
8,215	80	$>75 \%$ Grass cover, Good, HSG D
78,338	96	Weighted Average
8,215		10.49\% Pervious Area
70,123		89.51% Impervious Area

Summary for Subcatchment PR1: West Drainage Area
Runoff $=6.87$ cfs @ 15.05 hrs, Volume= 5.907 af, Depth= $7.85{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.01-360.00 hrs, dt= 0.01 hrs Huff B75 0-10sm 3Q $24.00 \mathrm{hrs} 100-\mathrm{YR}, 24-H R$ Rainfall=8.57", Smoothing=Off

	ea (sf)	CN D	Description Paved parking, HSG D		
	$\begin{aligned} & 08,285 \\ & 85,084 \end{aligned}$	$\begin{array}{ll} \hline 98 & P \\ 80 & > \end{array}$			
	$\begin{aligned} & 93,369 \\ & 85,084 \\ & 08,285 \end{aligned}$	$94 \begin{array}{r} \\ \\ \\ \\ 7\end{array}$	Weighted Average 21.63\% Pervious Area 78.37\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	$\begin{array}{r} \text { Velocity } \\ (\mathrm{ft} / \mathrm{sec}) \end{array}$	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
15.0					Direct Entry

2283.00 - Propose Huff B75 0-10sm 3Q 24.00 hrs 100-YR, 24-HR Rainfall=8.57", Smoothing=Off
Prepared by Pinnacle Engineering Group
HydroCAD® $10.00-21 \mathrm{~s} / \mathrm{n} 07894$ © 2018 HydroCAD Software Solutions LLC

Summary for Pond 1P: West Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.01-360.00 hrs, dt= 0.01 hrs
Starting Elev= 711.00' Surf.Area= 0.1977 ac Storage= 0.040 af
Peak Elev= 715.49' @ 17.09 hrs Surf.Area= 0.1977 ac Storage $=0.675$ af (0.635 af above start)
Plug-Flow detention time $=66.8 \mathrm{~min}$ calculated for 5.867 af (99% of inflow)
Center-of-Mass det. time $=57.5 \mathrm{~min}$ (889.0-831.5)

Volume	Invert	Avail.Storage	Storage Description
\#1A	710.50'	0.248 af	26.75'W x 322.00'L x 5.50'H Field A
			1.088 af Overall -0.467 af Embedded $=0.620$ af $\times 40.0 \%$ Voids
\#2A	711.00'	0.467 af	CMP Round 54×4 Inside \#1
			Effective Size=54.0"W x 54.0"H => 15.90 sf $\times 20.00^{\prime} \mathrm{L}=318.1 \mathrm{cf}$
			Overall Size $=54.0 \mathrm{~W} \times 54.0 \mathrm{H} \times 20.00^{\prime} \mathrm{L}$
			Row Length Adjustment $=+300.00$ ' 15.90 sf $\times 4$ rows
		0.715 af	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Primary	711.00'	24.0" Round Culvert
			$\mathrm{L}=50.0{ }^{\prime} \mathrm{RCP}$, square edge headwall, $\mathrm{Ke}=0.500$
			Inlet / Outlet Invert= 711.00' / 710.75' S=0.0050'/' Cc= 0.900
			$\mathrm{n}=0.012$ Concrete pipe, finished, Flow Area=3.14 sf
\#2	Device 1	711.00'	11.0" Vert. Orifice/Grate $\mathrm{C}=0.600$
\#3	Primary	715.50'	5.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Primary OutFlow Max=6.38 cfs @ 17.09 hrs HW=715.49' (Free Discharge)

- $1=$ Culvert (Passes 6.38 cfs of 28.24 cfs potential flow)

3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 3P: East Pond

Routing by Dyn-Stor-Ind method, Time Span= 0.01-360.00 hrs, dt= 0.01 hrs Starting Elev=712.00' Surf.Area= 0.7191 ac Storage= 0.560 af Peak Elev= 715.99' @ 16.01 hrs Surf.Area= 0.7191 ac Storage= 2.627 af (2.067 af above start)

Plug-Flow detention time $=126.6$ min calculated for 16.705 af (97% of inflow)
Center-of-Mass det. time $=85.0 \mathrm{~min}(901.7-816.7)$

$\mathbf{2 2 8 3 . 0 0}$ - Propose Huff B75 0-10sm 3Q 24.00 hrs $100-Y R$, 24-HR Rainfall=8.57", Smoothing=Off
Prepared by Pinnacle Engineering Group
HydroCAD® $10.00-21 \mathrm{~s} / \mathrm{n} 07894$ © 2018 HydroCAD Software Solutions LLC

Primary OutFlow Max=18.84 cfs @ 16.01 hrs HW=715.99' (Free Discharge)

- $1=$ Culvert (Passes 18.84 cfs of 24.54 cfs potential flow)

L2=Orifice/Grate (Orifice Controls 18.84 cfs @ 8.55 fps)
-3=Sharp-Crested Rectangular Weir(Controls 0.00 cfs)

Appendix I - Storm Sewer Calculations

Appendix I - Storm Sewer Calculations
(To be provided in Final Stormwater Management Report)

