Traffic Impact Study Proposed Affordable Apartment Development

Prepared For:

HTG Illinois Developer, LLC

1. Introduction

This report summarizes the methodologies, results, and findings of a traffic impact study conducted by Kenig, Lindgren, O'Hara, Aboona, Inc. (KLOA, Inc.) for a proposed affordable apartment development in Arlington Heights, Illinois. The site, which is currently vacant, is located in the southeast quadrant of the intersection of Rand Road with Chestnut Avenue. As proposed, the site will be developed to provide a four-story building containing approximately 40 apartment units and an approximate 80 -space surface parking lot. Access to the parking lot will be provided off Chestnut Avenue.

The purpose of this study was to examine background traffic conditions, assess the impact that the proposed development will have on traffic conditions in the area, and determine if any roadway or access improvements are necessary to accommodate traffic generated by the proposed development. Figure 1 shows the location of the site in relation to the area roadway system. Figure 2 shows an aerial view of the site.

The sections of this report present the following:

- Existing roadway conditions
- A description of the proposed development
- Directional distribution of the development traffic
- Vehicle trip generation for the development
- Future traffic conditions including access to the development
- Traffic analyses for the weekday morning and evening peak hours
- Recommendations with respect to adequacy of the site access and adjacent roadway system
- Evaluation of the adequacy of the parking supply

Traffic capacity analyses were conducted for the weekday morning and evening peak hours for the following conditions:

1. Existing Conditions - Analyzes the capacity of the existing roadway system using existing peak hour traffic volumes in the surrounding area.
2. Background Conditions - Analyzes the capacity of the future roadway system using the traffic volumes that include the existing traffic volumes and the ambient area growth not attributable to any particular development.
3. Projected Conditions - Analyzes the capacity of the future roadway system using the traffic volumes that include the background traffic volumes and the traffic estimated to be generated by the proposed development.

Site Location
Figure 1

Aerial View of Site
Figure 2
Proposed Affordable Apartment Development Arlington Heights, Illinois

2. Existing Conditions

The following provides a description of the geographical location of the site, physical characteristics of the area roadway system including lane usage and traffic control devices, and existing peak hour traffic volumes.

Site Location

The site, which is currently vacant, is bounded by Chestnut Avenue to the north, a residential area to the east, Rand Road to the west, and Fast Casual Dining restaurant to the south.

Existing Roadway System Characteristics

The characteristics of the existing roadways near the proposed development are described below and illustrated in Figure 3.

Rand Road is a northwest-southeast, other principal arterial that generally provides two lanes in each direction in the vicinity of the site. At its unsignalized intersection with Techny Road and Chestnut Avenue, Rand Road provides an exclusive left-turn lane, a through lane, and a combined through/right-turn lane on both approaches. Rand Road is under the jurisdiction of the Illinois Department of Transportation (IDOT), is classified as a Strategic Regional Arterial (SRA), and carries an Annual Average Daily Traffic (AADT) volume of 29,900 vehicles (IDOT 2019). Rand Road has a posted speed limit of 45 miles per hour.

Chestnut Avenue is an east-west, local road that provides one lane in each direction in the vicinity of the site. At its unsignalized intersection with Rand Road, Chestnut Avenue provides an exclusive left-turn lane and a combined through/right-turn lane on the westbound approach. The west leg of this intersection is Techny Road, which provides an exclusive left-turn lane and a combined through/right-turn lane at its intersection with Chestnut Avenue. A standard style crosswalk is provided on the west leg of this intersection. At its unsignalized intersection with Stonebridge Drive (both legs) and the access drives in between, Chestnut Avenue provides a combined through/left-turn lane on the eastbound approach. The westbound approach provides a combined through/right-turn lane. Chestnut Avenue is under the jurisdiction of the Village of Arlington Heights and has a posted speed limit of 25 miles per hour.

Stonebridge Drive is a local road serving Stonebridge of Arlington Heights apartment building. At its unsignalized intersection with Chestnut Avenue, both legs of Stonebridge Drive provide a combined left-turn/right-turn lane on the southbound approach. Stonebridge Drive is under the jurisdiction of the Village of Arlington Heights and has a posted speed limit of 10 miles per hour.

Existing Traffic Volumes

In order to determine current vehicle, pedestrian, and bicycle conditions within the study area, KLOA, Inc. conducted peak period traffic and pedestrian counts at the following intersections:

- Chestnut Avenue with Rand Road and Techny Road
- Chestnut Avenue with Stonebridge Drive (both legs)
- Chestnut Avenue with access drives between both legs of Stonebridge Road

The traffic counts were conducted on Monday, April 6, 2021 during the evening (4:00 P.M. to 6:00 P.M.) and on Tuesday, April 6, 20021 during the morning (7:00 A.M. to 9:00 A.M.) peak periods. The results of the traffic counts show that the peak hours of traffic generally occur between 7:15 A.M. and 8:15 A.M. during the morning peak period and between 4:45 P.M. and 5:45 P.M. during the evening peak period. Copies of the traffic count summary sheets are included in the Appendix.

Due to the ongoing COVID-19 pandemic, traffic volumes in the study area do not reflect normal or typical conditions. As such, KLOA, Inc. compared the April 2021 traffic counts with previous counts conducted by KLOA, Inc. in 2015 (adjusted with CMAP growth factors to be discussed later to reflect 2021 traffic conditions). The comparison indicated that the April 2021 weekday morning peak hour volumes were similar while the evening peak hour volumes were approximately 10 percent lower. Therefore, the traffic counts were increased by 10 percent during the weekday evening peak hour to reflect normal or typical conditions. The Year 2021 base traffic volumes are illustrated in Figure 4.

Crash Analysis

KLOA, Inc. obtained accident data ${ }^{1}$ for the most recent available past five years (2015 to 2019) for the intersection of Chestnut Avenue with Rand Road and Techny Road. A summary of the crash data for the intersection of Chestnut Avenue with Rand Road and Techny Road is shown in Table 1. A review of the crash data revealed no fatalities were reported at any of the studied intersections during the review period.

[^0]

Table 1
RAND ROAD WITH CHESTNUT AVENUE AND TECHNY ROAD - CRASH SUMMARY

	Type of Accident Frequency							
Year	Angle	Object	Rear End	Sideswipe	Turning	Other	Total	
2015	3	0	0	0	2	0	5	
2016	0	0	0	0	2	0	2	
2017	1	0	0	0	1	0	2	
2018	1	0	0	0	1	0	2	
2019	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{1}$	$\underline{0}$	$\underline{1}$	
Total	$\mathbf{5}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{7}$	$\mathbf{0}$	$\mathbf{1 2}$	
Average/Year	$\mathbf{1 . 0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1 . 4}$	$\mathbf{0}$	$\mathbf{2} .4$	

3. Traffic Characteristics of the Proposed Development

In order to properly evaluate future traffic conditions in the surrounding area, it was necessary to determine the traffic characteristics of the proposed development, including the directional distribution and volumes of traffic that it will generate.

Proposed Site and Development Plan

As proposed, the site will be redeveloped to provide a four-story building containing approximately 40 apartment units and an approximate 80 -space surface parking lot. Access to the parking lot will be provided via the following:

- A proposed full movement access drive off Chestnut Avenue located approximately 225 feet east of Rand Road. This access drive will provide one inbound lane and one outbound lane with outbound movements under stop sign control.
- A proposed full movement access drive off Chestnut Avenue located approximately 515 feet east of Rand Road. This access drive will provide one inbound lane and one outbound lane with outbound movements under stop sign control.

It should be noted that, as part of the development, the existing access drive on Rand Road will be eliminated, which will improve the traffic flow along Rand Road.

A copy of the preliminary site plan depicting the proposed development is included in the Appendix.

Directional Distribution

The directions from which residents and visitors of the development will approach and depart the site were estimated based on existing travel patterns, as determined from the traffic counts. Figure 5 illustrates the directional distribution of the traffic to be generated by the proposed development.

Development Traffic Generation

The vehicle trip generation for the overall development was calculated using data published in the Institute of Transportation Engineers (ITE) Trip Generation Manual, $10^{\text {th }}$ Edition. Table 2 shows the estimated vehicle trip generation for the weekday morning and weekday evening peak hours as well as daily traffic. Copies of the ITE trip generation worksheets are included in the Appendix.

Table 2
ESTIMATED PEAK HOUR VEHICLE TRIP GENERATION

ITE Land Use Code	Type/Size	Weekday Morning Peak Hour			Weekday Evening Peak Hour			Daily Traffic
		In	Out	Total	In	Out	Total	
221	Apartments (40 units)	4	10	14	11	7	18	218

Trip Generation Comparison

The traffic that will be generated by the proposed apartment development was compared with trip generation estimates for an approximate 5,000 square-foot restaurant that could be developed on site. ITE trip rates for "High Turnover Sit Down Restaurant" (Land-Use Code 932) were utilized. Table 3 shows the trip generation comparison between the proposed use and the restaurant.

Table 3
ESTIMATED PEAK HOUR DEVELOPMENT-GENERATED TRAFFIC VOLUMES

ITE Land Use Code	Type/Size	Weekday Morning Peak Hour			Weckday Evening Peak Hour			Daily Traffic
		In	Out	Total	In	Out	Total	
221	Apartments (40 units)	4	10	14	11	7	18	218
932	High Turnover (Sit Down) Restaurant	28	22	50	30	19	49	561
	$\begin{aligned} & 45 \text { Percent Pass-By } \\ & \text { Reduction } \end{aligned}$	-11	-11	-22	-11	-11	$\underline{-22}$	$\underline{-252}$
	Subtotal	17	11	28	19	8	27	309
	Difference	-13	-1	-14	-8	-1	-9	-91

As can be seen in Table 3, the proposed residential development will generate less traffic than the restaurant during the peak hours and on a daily basis. As such, the traffic to be generated by the proposed residential development will have a lower impact on the roadway system.

4. Projected Traffic Conditions

The total projected traffic volumes include the existing traffic volumes, increase in background traffic due to growth, and the traffic estimated to be generated by the proposed subject development.

Development Traffic Assignment

The estimated peak hour traffic volumes that will be generated by the proposed development were assigned to the roadway system in accordance with the previously described directional distribution. Figure 6 illustrates the assignment of the traffic volumes estimated to be generated by the proposed development.

Background Traffic Conditions

The existing traffic volumes (Figure 4) were increased by a regional growth factor to account for the increase in existing traffic related to regional growth in the area (i.e., not attributable to any particular planned development). Based on 2050 Average Daily Traffic (ADT) projections provided by the Chicago Metropolitan Agency for Planning (CMAP) in a letter dated April 6, 2021, the existing traffic volumes were increased by an annually compounded growth rate for six years (one-year buildout plus five years) totaling 2.1 percent to represent Year 2027 background (no-build) conditions. Figure 7 shows the Year 2027 no-build traffic conditions. A copy of the CMAP 2050 projections letter is included in the Appendix.

Total Projected Traffic Volumes

The total projected traffic volumes include the Year 2027 no-build traffic volumes (Figure 7) and the traffic estimated to be generated by the proposed development (Figure 6). Figure 8 shows the Year 2027 total projected traffic volumes.

5. Traffic Analysis and Recommendations

The following provides an evaluation conducted for the weekday morning and evening peak hours. The analysis includes conducting capacity analyses to determine how well the roadway system and access drives are projected to operate and whether any roadway improvements or modifications are required.

Traffic Analyses

Roadway and adjacent or nearby intersection analyses were performed for the weekday morning and evening peak hours for the existing (Year 2021), no-build (Year 2027), and future projected (Year 2027) traffic volumes.

The traffic analyses were performed using the methodologies outlined in the Transportation Research Board's Highway Capacity Manual (HCM), $6^{\text {th }}$ Edition and analyzed using Synchro/SimTraffic 10 software.

The analyses for the unsignalized intersections determine the average control delay to vehicles at an intersection. Control delay is the elapsed time from a vehicle joining the queue at a stop sign (includes the time required to decelerate to a stop) until its departure from the stop sign and resumption of free flow speed. The methodology analyzes each intersection approach controlled by a stop sign and considers traffic volumes on all approaches and lane characteristics.

The ability of an intersection to accommodate traffic flow is expressed in terms of level of service, which is assigned a letter from A to F based on the average control delay experienced by vehicles passing through the intersection. The Highway Capacity Manual definitions for levels of service and the corresponding control delay for signalized intersections and unsignalized intersections are included in the Appendix of this report.

Summaries of the traffic analysis results showing the level of service and overall intersection delay (measured in seconds) for the existing, Year 2027 no-build conditions, and Year 2027 total projected conditions are presented in Tables 4 through 6 . A discussion of the intersections follows. Summary sheets for the capacity analyses are included in the Appendix.

Table 4
CAPACITY ANALYSIS RESULTS - EXISTING CONDITIONS - UNSIGNALIZED

Intersection	Weekday Morning Peak Hour		Weekday Evening Peak Hour	
	LOS	Delay	LOS	Delay
Rand Road with Chestnut Avenue and Techny Road				
- Northwest-bound Left Turns (Rand Road)	B	10.1	B	10.7
- Eastbound Left Turns	C	23.5	E	49.8
- Eastbound Through/Right Turns	C	15.4	E	36.6
- Westbound Left Turns	B	18.9	E	45.9
- Westbound Through/Right Turns	C	16.1	C	21.1
- Southeast-bound Left Turns (Rand Road)	A	8.4	B	11.7
Chestnut Avenue with Stonebridge Drive (West Leg)				
- Eastbound Left Turns	A	7.3	A	7.3
- Southbound Approach	A	8.6	A	9.0
Chestnut Avenue with Existing Access Drive (West)				
- Northbound Left Turns	A	0.1	A	7.3
- Southbound Approach	A	8.6	A	8.7
Chestnut Avenue with Existing Access Drive (East)				
- Northbound Left Turns	A	7.3	A	7.3
- Eastbound Approach	A	8.4	A	8.5
Chestnut Avenue with Stonebridge Drive (East Leg)				
- Northbound Left Turns	A	0.1	A	7.3
- Southbound Approach	A	8.8	A	9.0
LOS = Level of Service Delay is measured in seconds.				

Table 5
CAPACITY ANALYSIS RESULTS - NO-BUILD CONDITIONS - UNSIGNALIZED

Intersection	Weekday Morning Peak Hour		Weekday Evening Peak Hour	
	LOS	Delay	LOS	Delay
Rand Road with Chestnut Avenue and Techny Road				
- Northwest-bound Left Turns (Rand Road)	B	10.2	B	10.8
- Eastbound Left Turns	C	24.0	F	52.1
- Eastbound Through/Right Turns	C	15.7	E	38.1
- Westbound Left Turns	B	19.2	E	48.3
- Westbound Through/Right Turns	C	16.4	C	21.7
- Southeast-bound Left Turns (Rand Road)	A	8.4	B	11.9
Chestnut Avenue with Stonebridge Drive (West Leg)				
- Eastbound Left Turns	A	7.3	A	7.3
- Southbound Approach	A	8.6	A	9.0
Chestnut Avenue with Existing Access Drive (West)				
- Northbound Left Turns	A	0.1	A	7.3
- Southbound Approach	A	8.6	A	8.7
Chestnut Avenue with Existing Access Drive (East)				
- Northbound Left Turns	A	7.3	A	7.3
- Eastbound Approach	A	8.4	A	8.5
Chestnut Avenue with Stonebridge Drive (East Leg)				
- Northbound Left Turns	A	0.1	A	7.3
- Southbound Approach	A	8.8	A	9.0
LOS = Level of Service Delay is measured in seconds.				

Table 6
CAPACITY ANALYSIS RESULTS - TOTAL PROJECTED CONDITIONS - UNSIGNALIZED

Intersection	Weekday Morning Peak Hour		Weekday Evening Peak Hour	
	LOS	Delay	LOS	Delay
Rand Road with Chestnut Avenue and Techny Road				
- Northwest-bound Left Turns (Rand Road)	B	10.2	B	10.8
- Eastbound Left Turns	C	24.3	F	55.3
- Eastbound Through/Right Turns	C	15.7	E	40.4
- Westbound Left Turns	B	19.6	F	51.1
- Westbound Through/Right Turns	C	15.4	C	21.5
- Southeast-bound Left Turns (Rand Road)	A	8.5	B	12.0
Chestnut Avenue with Stonebridge Drive (West Leg)				
- Eastbound Left Turns	A	7.3	A	7.3
- Southbound Approach	A	8.7	A	9.1
Chestnut Avenue with Existing Access Drive (West)				
- Northbound Left Turns	A	0.1	A	7.3
- Southbound Approach	A	8.6	A	8.8
Chestnut Avenue with Existing Access Drive (East)				
- Northbound Left Turns	A	7.3	A	7.3
- Eastbound Approach	A	8.5	A	8.6
Chestnut Avenue with Stonebridge Drive (East Leg)				
- Northbound Left Turns	A	0.1	A	7.3
- Southbound Approach	A	8.8	A	9.0
Chestnut Avenue with Proposed Site Access Drive (West)				
- Northbound Approach	A	8.9	A	9.3
- Westbound Left Turns	A	0.1	A	0.1
Chestnut Avenue with Proposed Site Access Drive (East)				
- Northbound Approach	A	8.8	A	9.1
- Westbound Left Turns	A	0.1	A	7.3
LOS = Level of Service Delay is measured in seconds.				

Discussion and Recommendations

The following summarizes how the intersections are projected to operate and identifies any roadway and traffic control improvements necessary to accommodate the development traffic.

Rand Road with Chestnut Avenue and Techny Road

The results of the capacity analysis indicate that the northwest-bound and southeast-bound leftturn movements from Rand Road onto Chestnut Avenue and Techny Road are operating at LOS B or better during the weekday morning and evening peak hours. In addition, the eastbound movements from Techny Road onto Rand Road currently operate at LOS C during the weekday morning peak hour and LOS E during the weekday evening peak hour. The westbound left-turn movements from Chestnut Avenue onto Rand Road are operating at LOS B during the weekday morning peak hour and LOS E during the weekday evening peak hour. In addition, the westbound through/right-turn movements from Chestnut Avenue onto Rand Road currently operate at LOS C during both peak hours.

Under Year 2027 no-build conditions, all movements will continue to operate at the same existing levels of serving during the weekday morning and evening peak hours except for the eastbound left-turn movements, which will operate at LOS C during the weekday morning peak hour and LOS F during the weekday evening peak hour. This is normal and expected when a minor road intersects a major road such as Rand Road.

Under Year 2027 total projected conditions, the westbound left-turn movements will operate at LOS B during the weekday morning peak hour and LOS F during the weekday evening peak hour with increases in delay of less than three seconds. It should be noted that the westbound left-turn movements will have a volume-to-capacity (v/c) ratio of less than one (0.43) during the weekday evening peak hour, which indicates that adequate reserve capacity is available to accommodate the increase in traffic. All of the other movements will continue to operate at the same levels of service during both peak hours with increases in delay of approximately two seconds or less. Based on a review of the simulation, the westbound left-turn queues on Chestnut Avenue will experience $95^{\text {th }}$ percentile queues of 47 feet during the weekday morning peak hour and 58 feet during the weekday evening peak hour. In addition, the westbound right-turn queues on Chestnut Avenue will experience $95^{\text {th }}$ percentile queues of 27 feet during the weekday morning peak hour and 90 feet during the weekday evening peak hour. As such, the westbound queues will generally not extend to or beyond the proposed site access drives. Furthermore, the proposed development is projected to increase the volume of traffic traversing this intersection by less than one percent during both peak hours. As such, this intersection has sufficient reserve capacity to accommodate the traffic projected to be generated by the development and no roadway improvements and/or traffic control modifications are required.

Chestnut Avenue with Stonebridge Drive (West Leg)

The results of the capacity analysis indicate that the eastbound left-turn movements and the southbound approach are operating at LOS A during the weekday morning and evening peak hours.

Under Year 2027 no-build conditions, all movements will continue to operate at LOS A during the weekday morning and evening peak hours with increases in delay of less than one second.

Under Year 2027 total projected conditions, all movements will operate at LOS A during the weekday morning and evening peak hours with increases in delay of less than one second. As such, this intersection has sufficient reserve capacity to accommodate the traffic projected to be generated by the development and no roadway improvements and/or traffic control modifications are required.

Chestnut Avenue with Existing Access Drive (West Leg)

The results of the capacity analysis indicate that the eastbound left-turn movements and the southbound approach are operating at LOS A during the weekday morning and evening peak hours.

Under Year 2027 no-build conditions, all movements will continue to operate at LOS A during the weekday morning and evening peak hours with increases in delay of less than one second.

Under Year 2027 total projected conditions, all movements will operate at LOS A during the weekday morning and evening peak hours with increases in delay of less than one second. As such, this intersection has sufficient reserve capacity to accommodate the traffic projected to be generated by the development and no roadway improvements and/or traffic control modifications are required.

Chestnut Avenue with Existing Access Drive (East Leg)

The results of the capacity analysis indicate that the eastbound left-turn movements and the southbound approach are operating at LOS A during the weekday morning and evening peak hours.

Under Year 2027 no-build conditions, all movements will continue to operate at LOS A during the weekday morning and evening peak hours with increases in delay of less than one second.

Under Year 2027 total projected conditions, all movements will operate at LOS A during the weekday morning and evening peak hours with increases in delay of less than one second. As such, this intersection has sufficient reserve capacity to accommodate the traffic projected to be generated by the development and no roadway improvements and/or traffic control modifications are required.

Chestnut Avenue with Stonebridge Drive (East Leg)

The results of the capacity analysis indicate that the eastbound left-turn movements and the southbound approach are operating at LOS A during the weekday morning and evening peak hours.

Under Year 2027 no-build conditions, all movements will continue to operate at LOS A during the weekday morning and evening peak hours with increases in delay of less than one second.

Under Year 2027 total projected conditions, all movements will operate at LOS A during the weekday morning and evening peak hours with increases in delay of less than one second. As such, this intersection has sufficient reserve capacity to accommodate the traffic projected to be generated by the development and no roadway improvements and/or traffic control modifications are required.

Chestnut Avenue with Proposed Access Drive (West)

The results of the analysis indicate that the outbound movements from the site onto Chestnut Avenue will operate at LOS A during the weekday morning and evening peak hours with $95^{\text {th }}$ percentile queues of one to two vehicles. In addition, the westbound left-turn movements will operate at LOS A during both peak hours with $95^{\text {th }}$ percentile queues of one to two vehicles. As such, this access drive will be adequate in accommodating the traffic estimated to be generated by the proposed development and will ensure efficient and flexible access is provided.

Chestnut Avenue with Proposed Access Drive (East)

The results of the analysis indicate that the outbound movements from the site onto Chestnut Avenue will operate at LOS A during the weekday morning and evening peak hours with $95^{\text {th }}$ percentile queues of one to two vehicles. In addition, the westbound left-turn movements will operate at LOS A during both peak hours with $95^{\text {th }}$ percentile queues of one to two vehicles. As such, this access drive will be adequate in accommodating the traffic estimated to be generated by the proposed development and will ensure efficient and flexible access is provided.

Parking Evaluation

As previously indicated, the proposed development will have approximately 40 apartment units and an approximate 80 -space surface parking lot at a ratio of 2.0 spaces per unit. In order to determine the adequacy of the parking supply, the parking requirement was estimated based on the Village of Arlington Heights code, parking rates published by the Institute of Transportation Engineers' (ITE) Parking Generation Manual, $5^{\text {th }}$ Edition, and comparison with other similar developments. Based on the two methodologies, the parking demand for the proposed development is as follows:

Parking Requirements of Proposed Development per Village of Arlington Heights Zoning Code

- Multifamily Housing (40 units)
- 80 parking spaces (ratio of 2.0 parking space per dwelling unit)

Based on the above and the requirements of the Village of Arlington Heights, this translates into 80 parking spaces, which results in a deficit of zero parking spaces.

ITE Parking Generation Manual

- Residential Use (Multifamily Housing Mid-Rise (no nearby rail transit) - Land Use Code 221:

$$
\text { - } 59 \text { parking spaces (ratio of } 1.47 \text { spaces per dwelling unit) }
$$

Based on the above and the rates published in the ITE Parking Generation Manual, this translates into 59 parking spaces, which results in a surplus of 21 parking spaces. Therefore, the proposed parking supply of 80 parking spaces exceeds ITE's requirements of 59 parking spaces.

Parking Ratios of Similar Developments

Parking occupancy surveys were conducted at two similar facilities in Lake in the Hills and Orland Hills:

- Villas of Lake in the Hills in Lake in the Hills, which includes 60 units (6 one-bedroom units, 40 two-bedroom units, and 14 three-bedroom units)
- Pheasant Ridge Hunter Apartments in Orland Hills, which includes 177 units (60 onebedroom, 72 two-bedroom and 45 three-bedroom units)

The surveys were conducted on Friday, March 19, 2021 and on Saturday, March 20, 2021 in onehour intervals from 6:00 A.M. to 10:00 A.M. and from 2:00 P.M. to 10:00 P.M. The parking occupancy surveys are summarized in Table 6. (Table 6 is included in the Appendix.)

Villas of Lake in the Hills - Lake in the Hills

The results of the parking occupancy surveys at the Villas of Lake in the Hills indicated the following:

- Villas of Lake in the Hills provides approximately 132 parking spaces, resulting in a ratio of 2.2 parking spaces per unit.
- The parking occupancy on Friday ranged from 43 to 67 vehicles (33 to 51 percent occupied).
- The parking occupancy on Saturday ranged from 46 to 66 vehicles (35 to 50 percent occupied).
- Peak occupancy on Friday was 67 vehicles (51 percent) occurring at 6:00 A.M. resulting in a surplus of 65 parking spaces.
- Peak occupancy on Saturday was 66 vehicles (50 percent) occurring at 6:00 A.M. resulting in a surplus of 66 parking spaces.

As such, the observed peak parking demand was 67 spaces, resulting in a parking ratio of 1.12 parking spaces per unit.

Pheasant Ridge Hunter Apartments in Orland Hills

The results of the parking occupancy surveys at Pheasant Ridge Hunter Apartments indicated the following:

- Pheasant Ridge Hunter Apartments provides approximately 282 parking spaces, resulting in a ratio of 1.59 parking spaces per unit.
- The parking occupancy on Friday ranged from 85 to 166 vehicles (30 to 59 percent occupied).
- The parking occupancy on Saturday ranged from 85 to 149 vehicles (30 to 53 percent occupied).
- Peak occupancy on Friday was 166 vehicles (59 percent) occurring at 6:00 A.M. resulting in a surplus of 116 parking spaces.
- Peak occupancy on Saturday was 149 vehicles (53 percent) occurring at 10:00 P.M. resulting in a surplus of 83 parking spaces.

As such, the observed peak parking demand was 166 spaces, resulting in a parking ratio of 0.94 parking spaces per unit.

Based on the parking surveys conducted at two similar facilities in Lake in the Hills and Orland Hills, the proposed parking ratio of 2.0 spaces per unit at the proposed affordable apartment development will be adequate in accommodating the projected parking demand.

6. Conclusion

Based on the preceding analyses and recommendations, the following conclusions have been made:

- The results of the capacity analysis indicate that the proposed development traffic will not have a significant impact on the area roadways.
- The development-generated traffic will only add less than one percent of the traffic projected to be traversing the intersection of Rand Road with Chestnut Avenue and Techny Road during the weekday morning and evening peak hours.
- The proposed access drives will be adequate in accommodating the traffic projected to be generated by the proposed development and will ensure that a flexible access system is provided.
- The proposed residential development will generate less traffic than a sit down restaurant that could be developed on the site and, as such, will have a lower impact on area roadways.
- As part of the development, the existing access drive on Rand Road will be eliminated, which will improve the traffic flow along Rand Road.
- The proposed parking that will be provided on site will ensure that adequate parking is provided to accommodate its projected parking demand.

Appendix

Traffic Count Summary Sheets Preliminary Site Plan

 ITE Trip Generation Worksheets CMAP 2050 Projections Letter Level of Service CriteriaCapacity Analysis Summary Sheets Parking Occupancy Surveys

Traffic Count Summary Sheets

Start Time	Turning Movement Data																								
	Chestnut Avenue Eastbound						Chestnut Avenue Westbound						Rand Road Northbound						Rand Road Southbound						Int. Total
	U-Turn	Left	Thru	Right	Peds	App. Total	U-Turn	Left	Thru	Right	Peds	App. Total	U-Turn	Left	Thru	Right	Peds	App. Total	U-Turn	Left	Thru	Right	Peds	App. Total	
4:00 PM	0	1	1	14	1	16	0	3	2	5	0	10	0	19	240	15	0	274	0	7	207	2	0	216	516
4:15 PM	0	3	1	3	0	7	0	5	4	13	0	22	0	10	257	9	0	276	0	7	196	3	0	206	511
4:30 PM	0	1	1	16	2	18	0	3	4	6	3	13	0	7	245	4	0	256	0	7	201	4	0	212	499
4:45 PM	0	1	2	11	0	14	0	3	2	10	0	15	0	13	264	7	0	284	0	5	183	3	0	191	504
Hourly Total	0	6	5	44	3	55	0	14	12	34	3	60	0	49	1006	35	0	1090	0	26	787	12	0	825	2030
5:00 PM	0	1	3	13	0	17	0	5	1	5	0	11	0	13	240	8	0	261	0	11	218	0	2	229	518
5:15 PM	0	1	6	14	1	21	0	4	4	5	0	13	0	16	291	9	0	316	0	8	209	1	0	218	568
5:30 PM	0	2	3	11	1	16	0	3	2	12	0	17	0	17	221	8	0	246	0	9	224	2	2	235	514
5:45 PM	0	1	1	8	1	10	0	6	5	3	0	14	1	14	219	2	0	236	0	1	176	1	1	178	438
Hourly Total	0	5	13	46	3	64	0	18	12	25	0	55	1	60	971	27	0	1059	0	29	827	4	5	860	2038
*** BREAK ***	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
6:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0	0	4	0	1	28	0	0	29	33
Hourly Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0		4	0	1	28	0	0	29	33
7:00 AM	0	0	3	14	2	17	0	4	3	5	0	12	0	1	86	0	0	87	0	2	165	0	0	167	283
7:15 AM	0	2	1	16	0	19	0	6	3	2	0	11	0	4	86	2	0	92	0	9	249	1	0	259	381
7:30 AM	0	3	4	11	0	18	0	3	3	2	0	8	1	3	127	2	0	133	0	4	241	1	0	246	405
7:45 AM	0	3	6	12	0	21	0	4	3	6	0	13	0	4	118	1	0	123	0	4	228	2	0	234	391
Hourly Total	0	8	14	53	2	75	0	17	12	15	0	44	1	12	417	5	0	435	0	19	883	4	0	906	1460
8:00 AM	0	1	0	7	0	8	0	0	0	2	0	2	0	4	135	1	0	140	0	4	203	0	0	207	357
8:15 AM	0	1	2	7	2	10	0	3	2	1	0	6	0	5	104	6	0	115	0	5	182	1	0	188	319
8:30 AM	0	1	1	13	0	15	0	3	5	5	0	13	0	4	135	7	0	146	0	8	205	1	0	214	388
8:45 AM	0	1	3	16	0	20	0	2	2	7	0	11	0	4	141	3	0	148	0	3	183	3	0	189	368
Hourly Total	0	4	6	43	2	53	0	8	9	15	0	32	0	17	515	17	0	549	0	20	773	5	0	798	1432
Grand Total	0	23	38	186	10	247	0	57	45	89	3	191	2	138	2913	84	0	3137	0	95	3298	25	5	3418	6993
Approach \%	0.0	9.3	15.4	75.3	-	-	0.0	29.8	23.6	46.6	-	-	0.1	4.4	92.9	2.7	-	-	0.0	2.8	96.5	0.7	-	-	-
Total \%	0.0	0.3	0.5	2.7	-	3.5	0.0	0.8	0.6	1.3	-	2.7	0.0	2.0	41.7	1.2	-	44.9	0.0	1.4	47.2	0.4	-	48.9	-
Lights	0	23	37	186	-	246	0	55	42	89	-	186	2	137	2844	81	-	3064	0	94	3222	25	-	3341	6837
\% Lights	-	100.0	97.4	100.0	\checkmark	99.6	-	96.5	93.3	100.0	-	97.4	100.0	99.3	97.6	96.4	-	97.7	-	98.9	97.7	100.0	-	97.7	97.8
Buses	0	0	0	0	-	0	0	1	0	0	-	1	0	0	3	2	-	5	0	0	4	0	-	4	10
\% Buses	-	0.0	0.0	0.0	-	0.0	-	1.8	0.0	0.0	-	0.5	0.0	0.0	0.1	2.4	-	0.2	-	0.0	0.1	0.0	-	0.1	0.1
Single-Unit Trucks	0	0	0	0	-	0	0	1	1	0	-	2	0	0	37	1	-	38	0	1	36	0	-	37	77
\% Single-Unit Trucks	-	0.0	0.0	0.0	-	0.0	-	1.8	2.2	0.0	-	1.0	0.0	0.0	1.3	1.2	-	1.2	-	1.1	1.1	0.0	-	1.1	1.1
Articulated Trucks	0	0	0	0	-	0	0	0	0	0	-	0	0	1	28	0	-	29	0	0	35	0	-	35	64
\% Articulated Trucks	-	0.0	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	0.0	0.0	0.7	1.0	0.0	-	0.9	-	0.0	1.1	0.0	-	1.0	0.9

Start Time	Turning Movement Peak Hour Data $\begin{array}{c}\text { Chestnut Avenue } \\ \text { Chestrut Avenue } \\ \text { Eastbound }\end{array}$ $\begin{array}{c}\text { Westbound }\end{array}$ $\begin{array}{c}\text { Rand Road } \\ \text { Northbound }\end{array}$																		Rand Road Southbound						
	U-Turn	Left	Thru	Right	Peds	App. Total	U-Turn	Left	Thru	Right	Peds	$\begin{aligned} & \text { App. } \\ & \text { Total } \\ & \hline \end{aligned}$	U-Turn	Left	Thru	Right	Peds	App. Total	U-Turn	Left	Thru	Right	Peds	$\begin{aligned} & \text { App. } \\ & \text { Total } \end{aligned}$	Int. Total
4:45 PM	0	1	2	11	0	14	0	3	2	10	0	15	0	13	264	7		284	0	5	183	3		191	504
5:00 PM	0	1	3	13	0	17	0	5	1	5	0	11	0	13	240	8	0	261	0	11	218	0	2	229	518
5:15 PM	0	1	6	14	1	21	0	4	4	5	0	13	0	16	291	9	0	316	0	8	209	1	0	218	568
5:30 PM	0	2	3	11	1	16	0	3	2	12	0	17	0	17	221	8	0	246	0	9	224	2	2	235	514
Total	0	5	14	49	2	68	0	15	9	32	0	56	0	59	1016	32	0	1107	0	33	834	6	4	873	2104
Approach \%	0.0	7.4	20.6	72.1	-	-	0.0	26.8	16.1	57.1	-	-	0.0	5.3	91.8	2.9	-	-	0.0	3.8	95.5	0.7	-	-	-
Total \%	0.0	0.2	0.7	2.3	-	3.2	0.0	0.7	0.4	1.5	-	2.7	0.0	2.8	48.3	1.5	-	52.6	0.0	1.6	39.6	0.3	-	41.5	-
PHF	0.000	0.833	0.778	1.167	-	1.079	0.000	1.000	0.750	0.889	-	1.098	0.000	1.157	1.164	1.185	-	1.168	0.000	1.000	1.241	0.667	-	1.238	1.235
Lights	0	5	14	49	-	68	0	14	9	32	-	55	0	58	1003	31	-	1092	0	33	827	6	-	866	2081
\% Lights	-	100.0	100.0	100.0	-	100.0	-	93.3	100.0	100.0	-	98.2	-	98.3	98.7	96.9	-	98.6	-	100.0	99.2	100.0	-	99.2	98.9
Buses	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
\% Buses	-	0.0	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	0.0	-	0.0	0.0	0.0	\cdots	0.0	0.0
Single-Unit Trucks	0	0	0	0	-	0	0	1	0	0	-	1	0	0	5	1	-	6	0	0	4	0	-	4	11
\% Single-Unit Trucks	-	0.0	0.0	0.0	-	0.0	.	6.7	0.0	0.0	-	1.8	.	0.0	0.5	3.1	-	0.5	.	0.0	0.5	0.0	-	0.5	0.5
Articulated Trucks	0	0	0	0	-	0	0	0	0	0	-	0	0	1	8	0	-	9	0	0	3	0	-	3	12
\% Articulated Trucks	-	0.0	0.0	0.0	-	0.0	.	0.0	0.0	0.0	-	0.0	.	1.7	0.8	0.0	-	0.8	.	0.0	0.4	0.0	-	0.3	0.6
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
\% Bicycles on Road	-	0.0	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	0.0	0.0
Pedestrians	-	-	-	-	2	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	4	-	-
\% Pedestrians	-	-	-	-	100.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	100.0	-	-

Start Time																			Rand Road Southbound						
	U-Turn	Left	Thru	Right	Peds	App. Total	U-Turn	Left	Thru	Right	Peds	App. Total	U-Turn	Left	Thru	Right	Peds	App. Total	U-Turn	Left	Thru	Right	Peds	App. Total	Int. Total
7:15 AM	0	2	1	16	0	19	0	6	3	2	0	11	0	4	86	2	0	92	0	9	249	1	0	259	381
7:30 AM	0	3	4	11	0	18	0	3	3	2	0	8	1	3	127	2	0	133	0	4	241	1	0	246	405
7:45 AM	0	3	6	12	0	21	0	4	3	6	0	13	0	4	118	1	0	123	0	4	228	2	0	234	391
8:00 AM	0	1	0	7	0	8	0	0	0	2	0	2	0	4	135	1		140	0	4	203	0	0	207	357
Total	0	9	11	46	0	66	0	13	9	12	0	34	1	15	466	6	0	488	0	21	921	4	0	946	1534
Approach \%	0.0	13.6	16.7	69.7	-	-	0.0	38.2	26.5	35.3	-	-	0.2	3.1	95.5	1.2	-	-	0.0	2.2	97.4	0.4	-	-	-
Total \%	0.0	0.6	0.7	3.0	-	4.3	0.0	0.8	0.6	0.8	-	2.2	0.1	1.0	30.4	0.4	-	31.8	0.0	1.4	60.0	0.3	-	61.7	-
PHF	0.000	1.000	0.611	0.958	-	1.048	0.000	0.722	1.000	0.667	-	0.872	0.333	1.250	1.151	1.000	-	1.162	0.000	0.778	1.233	0.667	-	1.218	1.263
Lights	0	9	11	46	-	66	0	13	8	12	-	33	1	15	443	6	-	465	0	21	888	4	-	913	1477
\% Lights	-	100.0	100.0	100.0	-	100.0	-	100.0	88.9	100.0	-	97.1	100.0	100.0	95.1	100.0	-	95.3	-	100.0	96.4	100.0	-	96.5	96.3
Buses	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	1	0	-	1	1
\% Buses	-	0.0	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0	-	0.0	-	0.0	0.1	0.0	-	0.1	0.1
Single-Unit Trucks	0	0	0	0	-	0	0	0	1	0	-	1	0	0	12	0	-	12	0	0	17	0	\cdots	17	30
\% Single-Unit Trucks	.	0.0	0.0	0.0	-	0.0	.	0.0	11.1	0.0	-	2.9	0.0	0.0	2.6	0.0	.	2.5	.	0.0	1.8	0.0	-	1.8	2.0
Articulated Trucks	0	0	0	0	-	0	0	0	0	0	-	0	0	0	11	0	-	11	0	0	15	0	-	15	26
Trucks \% Articulated	-	0.0	0.0	0.0	-	0.0	-	0.0	0.0	0.0	-	0.0	0.0	0.0	2.4	0.0	-	2.3	-	0.0	1.6	0.0	-	1.6	1.7
Bicycles on Road	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0	0	0	0	-	0	0
\% Bicycles on Road	.	0.0	0.0	0.0	-	0.0	.	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0	-	0.0	.	0.0	0.0	0.0	-	0.0	0.0
Pedestrians	-	-	-	-	0	-	-		-	-	0	-	\checkmark	-	-	-	0	-	\cdot	-	-	-	0	-	-
\% Pedestrians	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Turning Movement Data

Start Time
4:00 PM
4:15 PM
4:30 PM
4:45 PM
Hourly Total
5:00 PM
5:15 PM
5:30 PM
5:45 PM
Hourly Total
$\begin{gathered} * * * \text { BREAK *** } \\ \text { 6:45 AM } \\ \hline \end{gathered}$
7:00 AM
7:15 AM
7:30 AM
7:45 AM
Hourly Total
8:00 AM
8:15 AM
8:30 AM
8:45 AM
Hourly Total
Grand Total
Approach \%
Total \%
Lights
\% Lights
Buses
\% Buses
Single-Unit Trucks
\% Single-Unit Trucks
Articulated Trucks
\% Articulated Trucks
Bicycles on Road
\% Bicycles on Road

Count Name: Chestnut Avenue with Stonebridge Drive - West
Site Code:
Start Date: 04
Page No: 3
Sitart Date: 04/05/2021
Page No: 3

Turning Movement Peak Hour Data (4:45 PM)																
Start Time	Chestrut Avenue					Chestrut Avenue					Stonebridge Drive					Int. Total
	U-Turn	Left	astboun	Peds	App. Total	U-Turn	Thru	Westboun	Peds	App. Total	U-Turn	Left	outhbour Right	Peds	App. Total	
4:45 PM	0	2	13	0	15	0	15	0	0	15	0	0	0	2	0	30
5:00 PM	0	1	22	0	23	0	8	1	0	9	0	2	3	0	5	37
5:15 PM	0	1	23	0	24	0	15	0	0	15	0	0	1	2	1	40
5:45 PM	0	1	13	0	14	0	16	4	0	20	0	3	0	1	3	37
Total	0	5	71	0	76	0	54	5	0	59	0	5	4	5	9	144
Approach \%	0.0	6.6	93.4	-	-	0.0	91.5	8.5	-	-	0.0	55.6	44.4	-	-	-
Total \%	0.0	3.5	49.3	-	52.8	0.0	37.5	3.5	-	41.0	0.0	3.5	2.8	-	6.3	-
PHF	0.000	0.833	1.029	-	1.056	0.000	1.125	0.417	-	0.983	0.000	0.556	0.444	-	0.600	1.200
Lights	0	5	70	-	75	0	52	2	-	54	0	4	4	-	8	137
\% Lights	-	100.0	98.6	-	98.7	-	96.3	40.0	-	91.5	-	80.0	100.0	-	88.9	95.1
Buses	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Buses	-	0.0	0.0	-	0.0	-	0.0	0.0	-	0.0	-	0.0	0.0	-	0.0	0.0
Single-Unit Trucks	0	0	1	-	1	0	1	0	-	1	0	0	0	-	0	2
\% Single-Unit Trucks	-	0.0	1.4	-	1.3	-	1.9	0.0	-	1.7	-	0.0	0.0	-	0.0	1.4
Ariculated Trucks	0	0	0	-	0	0	0	0	-	0	0	0	0	-	0	0
\% Articulated Trucks	-	0.0	0.0	-	0.0	-	0.0	0.0	-	0.0	-	0.0	0.0	-	0.0	0.0
Bicycles on Road	0	0	0	-	-	0	1	3	-	4	0	1	0	-	1	5
\% Bicycles on Road	-	0.0	0.0	-	0.0	.	1.9	60.0	-	6.8	.	20.0	0.0	-	11.1	3.5
Pedestrians	-	-	-	0	-	-	-	-	0	-	-	-	-	5	-	-
\% Pedestrians	.	-	-	-	-	-	-	-	-	-	-	-	-	100.0	-	-

Count Name: Chestnut Avenue with Stonebridge Drive - West
Site Code:
Start Date: 04
Page No: 4
Site Code:
Start Date: 04/05/2021
Page No: 4

Start Time	U-Turn	Chestnut Avenue Eastbound			Turning Movement Peak Hour Data (7:15 AM)					
						Chestrut AvenueWestbound				
		Left	Thru	Peds	App. Total	U-Turn	Thru	Right	Peds	App. Total
7:15 AM	0	1	10	0	11	0	8	1	0	9
7:30 AM	0	0	10	0	10	0	9	1	0	10
7:45 AM	0	1	11	0	12	0	10	0	0	10
8:00 AM	0	1	4	0	5	0	4	1	0	5
Total	0	3	35	0	38	0	31	3	0	34
Approach \%	0.0	7.9	92.1	-	-	0.0	91.2	8.8	-	.
Total \%	0.0	4.0	46.7	-	50.7	0.0	41.3	4.0	-	45.3
PHF	0.000	1.000	1.061	-	1.056	0.000	1.033	1.000	-	1.133
Lights	0	2	35	-	37	0	30	3	-	33
\% Lights	.	66.7	100.0	-	97.4	-	96.8	100.0	-	97.1
Buses	0	0	0	-	0	0	0	0	-	0
\% Buses	.	0.0	0.0	-	0.0	.	0.0	0.0	-	0.0
Single-Unit Trucks	0	0	0	-	0	0	1	0	-	1
\% Single-Unit Trucks	-	0.0	0.0	-	0.0	-	3.2	0.0	-	2.9
Articulated Trucks	0	0	0	-	0	0	0	0	-	0
\% Articulated Trucks	-	0.0	0.0	.	0.0	-	0.0	0.0	.	0.0
Bicycles on Road	0	1	0	.	1	0	0	0	-	0
\% Bicycles on Road	.	33.3	0.0	-	2.6	-	0.0	0.0	-	0.0
Pedestrians	.	-	-	0	-	.	-	-	0	-
\% Pedestrians	.	.	-	-	-	.	.	.	-	.

Count Name: Chestnut Avenue with Stonebridge Drive - East
Site Code:
Site Code: 04/05/2021
Start Date: 0
Page No: 1 $\begin{array}{cc}\begin{array}{c}\text { Stonebridge Drive } \\ \text { Southbound } \\ \text { Right }\end{array} & \\ & \text { Peds }\end{array}$

 $\begin{array}{cc}\begin{array}{c}\text { Stonebridge Drive } \\ \text { Southbound } \\ \text { Right }\end{array} & \\ & \text { Peds }\end{array}$

 $\frac{5}{5} 000000000.100000000000000000 .10 .10 .10 .1$.

Count Name: Chestnut Avenue with Stonebridge Drive-East
Site Code:
Start Date:
Pag Start Date: 04/05/2021
Page No: 3

Start Time	Chestnut Avenue Eastbound				Turning Movement Peak Hour Data (4:45 PM)					
						Chestnut Avenue Westbound				
	U-Tum	Left	Thru	Peds	App. Total	U-Turn	Thru	Right	Peds	App. Total
4:45 PM	0	2	8	0	10	0	12	4	0	16
5:00 PM	0	2	13	0	15	0	7	4	0	11
5:15 PM	0	3	16	0	19	0	7	1	0	8
5:30 PM	0	2	14	0	16	0	13	1	1	14
Total	0	9	51	0	60	0	39	10	1	49
Approach \%	0.0	15.0	85.0	-	-	0.0	79.6	20.4	-	-
Total \%	0.0	7.4	41.8	-	49.2	0.0	32.0	8.2	-	40.2
PHF	0.000	1.000	1.063	-	1.053	0.000	1.000	0.833	-	1.021
Lights	0	8	51	-	59	0	39	10	-	49
\% Lights	-	88.9	100.0	-	98.3		100.0	100.0	-	100.0
Buses	0	0	0	-	0	0	0	0	-	0
\% Buses	.	0.0	0.0	-	0.0	.	0.0	0.0	-	0.0
Single-Unit Trucks	0	,	0	-	1	0	0	0	-	0
\% Single-Unit Trucks	.	11.1	0.0	-	1.7	-	0.0	0.0	-	0.0
Articulated Trucks	0	0	0	-	0	0	0	0	-	0
\% Articulated Trucks	-	0.0	0.0	-	0.0	-	0.0	0.0	-	0.0
Bicycles on Road	0	0	0	-	0	0	0	0	-	0
\% Bicycles on Road	.	0.0	0.0	-	0.0	-	0.0	0.0	-	0.0
Pedestrians	-	.	-	0	-	-	.	-	1	.
\% Pedestrians	.		-		-				100.0	.

Count Name: Chestnut Avenue with Stonebridge Drive - East
Site Code:
Start Date: 0
Page No: 4

Start Time	Chestnut Avenue				Turnin App. Total			Hou Nestbou		$5 \text { AM) }$
7:15 AM	0	0	11	0	11	0	8	0	0	8
7:30 AM	0	0	12	0	12	0	6	1	0	7
7:45 AM	0	0	9	0	9	0	7	2	0	9
8:00 AM	0	0	6	0	6	0	3	0	0	3
Total	0	0	38	0	38	0	24	3	0	27
Approach \%	0.0	0.0	100.0	-	-	0.0	88.9	11.1	-	-
Total \%	0.0	0.0	50.0	-	50.0	0.0	31.6	3.9	-	35.5
PHF	0.000	0.000	1.056	-	1.056	0.000	1.000	0.500	-	1.000
Lights	0	0	38		38	0	23	3		26
\% Lights	.	-	100.0	-	100.0	-	95.8	100.0	-	96.3
Buses	0	0	0	-	0	0	0	0	-	0
\% Buses	.	.	0.0	-	0.0	.	0.0	0.0	-	0.0
Single-Unit Trucks	0	0	0	-	0	0	1	0	-	1
\% Single-Unit Trucks	-	-	0.0	-	0.0	-	4.2	0.0	-	3.7
Articulated Trucks	0	0	0	-	0	0	0	0	-	0
\% Articulated Trucks	-	-	0.0	-	0.0	-	0.0	0.0	-	0.0
Bicycles on Road	0	0	0	.	0	0	0	0	-	0
\% Bicycles on Road	.	.	0.0	-	0.0	-	0.0	0.0	\checkmark	0.0
Pedestrians	.	-	-	0	-	-	-	-	0	-
\% Pedestrians	-	.

Preliminary Site Plan

ITE Trip Generation Worksheets

Multifamily Housing (Mid-Rise) (221)

Vehicle Trip Ends vs: Dwelling Units
 On a: Weekday

Setting/Location: General Urban/Suburban
Number of Studies: 27
Avg. Num. of Dwelling Units: 205
Directional Distribution: 50\% entering, 50\% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
5.44	$1.27-12.50$	2.03

Data Plot and Equation

Multifamily Housing (Mid-Rise) (221)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 7 and 9 a.m.
Setting/Location: General Urban/Suburban
Number of Studies: 53
Avg. Num. of Dwelling Units: 207
Directional Distribution: 26% entering, 74% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.36	$0.06-1.61$	0.19

Data Plot and Equation

Multifamily Housing (Mid-Rise) (221)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,
Peak Hour of Adjacent Street Traffic,
One Hour Between 4 and 6 p.m.
Setting/Location: General Urban/Suburban
Number of Studies: 60
Avg. Num. of Dwelling Units: 208
Directional Distribution: 61\% entering, 39\% exiting
Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.44	$0.15-1.11$	0.19

Data Plot and Equation

CMAP 2050 Projections Letter

Brendan S. May
Senor Consultant
Kenig, Lindgren, O'Hara and Aboona, Inc.
9575 West Higgins Road
Suite 400
Rosemont, IL 60018
Subject: Rand Road (US 12) @ Chestnut Avenue/Techny Road IDOT

Dear Mr. May:
In response to a request made on your behalf and dated April 6, 2021, we have developed year 2050 average daily traffic (ADT) projections for the subject location.

ROAD SEGMENT	Current AADT	Year 2050 AADT
Rand Rd, @ Chestnut Ave/Techny Rd	29,900	33,200

Traffic projections are developed using existing ADT data provided in the request letter and the results from the December 2020 CMAP Travel Demand Analysis. The regional travel model uses CMAP 2050 socioeconomic projections and assumes the implementation of the ON TO 2050 Comprehensive Regional Plan for the Northeastern Illinois area. The provision of this data in support of your request does not constitute a CMAP endorsement of the proposed development or any subsequent developments.

If you have any questions, please call me at (312) 386-8806.
Sincerely,

Jose Rodriguez, PTP, AICP
Senior Planner, Research \& Analysis
cc: Quigley (IDOT)
\2021_CY_TrafficForecast\ArlingtonHeights\ck-47-21\ck-47-21.docx

Level of Service Criteria

Capacity Analysis Summary Sheets Existing Weekday Morning Peak Hour Conditions

Minor Lane/Major Mvmt	NWL	NWT	NWR EBLn1	EBLn2WBLn1WBLn2	SEL	SET	SER		
Capacity (veh/h)	717	-	-204	407	273	345	1077	-	-
HCM Lane V/C Ratio	0.023	-	-0.046	0.153	0.05	0.064	0.021	-	-
HCM Control Delay (s)	10.1	-	-	23.5	15.4	18.9	16.1	8.4	-
HCM Lane LOS	B	-	-	C	C	C	C	A	-
HCM 95th \%tile Q(veh)	0.1	-	-	0.1	0.5	0.2	0.2	0.1	-

Major/Minor	Major1				Minor2	
Conflicting Flow All	34	0	-	0	74	34
Stage 1	-	-	-	-	34	-
Stage 2	-	-	-	-	40	-
Critical Hdwy	4.1	-	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	1591	-	-	-	935	1045
Stage 1	-	-	-	-	994	-
Stage 2	-	-	-	-	988	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1591	-	-	-	935	1045
Mov Cap-2 Maneuver	-	-	-	-	935	-
Stage 1	-	-	-	-	994	-
Stage 2	-	-	-	-	988	-
Approach	EB				SB	
HCM Control Delay, s	0		0		8.6	
HCM LOS					A	
Minor Lane/Major Mvmt		EBL	EBT	WBT WBR SBLn1		
Capacity (veh/h)		1591	-	-	-	1006
HCM Lane V/C Ratio		-	-	-	-	0.006
HCM Control Delay (s)		0	-	-	-	8.6
HCM Lane LOS		A	-	-	-	A
HCM 95th \%tile Q(veh)		0	-	-	-	0

Intersection						
Int Delay, s/veh	0.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		-1	F		Mr	
Traffic Vol, veh/h	2	38	28	0	0	4
Future Vol, veh/h	2	38	28	0	0	4
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, $\%$	0	0	3	0	0	0
Mvmt Flow	2	40	29	0	0	4

Major/Minor	Major1	Major2			Minor2		
Conflicting Flow All	29	0	-	0	73	29	
Stage 1	-	-	-	-	29	-	
Stage 2	-	-	-	-	44	-	
Critical Hdwy	4.1	-	-	-	6.4	6.2	
Critical Hdwy Stg 1	-	-	-	-	5.4	-	
Critical Hdwy Stg 2	-	-	-	-	5.4	-	
Follow-up Hdwy	2.2	-	-	-	3.5	3.3	
Pot Cap-1 Maneuver	1597	-	-	-	936	1052	
\quad Stage 1	-	-	-	-	999	-	
Stage 2	-	-	-	-	984	-	
Platoon blocked, \%		-	-	-			
Mov Cap-1 Maneuver	1597	-	-	-	935	1052	
Mov Cap-2 Maneuver	-	-	-	-	935	-	
Stage 1	-	-	-	-	998	-	
Stage 2	-	-	-	-	984	-	

Approach	EB	WB	SB
HCM Control Delay, s	0.4	0	8.4
HCM LOS			A

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1597	-	-	-1052
HCM Lane V/C Ratio	0.001	-	-	-0.004
HCM Control Delay (s)	7.3	0	-	-
HCM Lane LOS	A	A	-	-
HCM 95th \%tile Q(veh)	0	-	-	-

Intersection						

Capacity Analysis Summary Sheets

 Existing Weekday Evening Peak Hour Conditions| Intersection | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Int Delay, s/veh | 2.5 | | | | | | | | | | | |
| Movement | EBL | EBT | EBR | WBL | WBT | WBR | SEL | SET | SER | NWL | NWT | NWR |
| Lane Configurations | ${ }^{7}$ | \uparrow | | ${ }^{7}$ | \uparrow | | ${ }^{7}$ | 中 ${ }^{\text {a }}$ | | ${ }^{7}$ | 中 ${ }^{\text {a }}$ | |
| Traffic Vol, veh/h | 49 | 14 | 5 | 15 | 9 | 34 | 33 | 917 | 6 | 59 | 1118 | 32 |
| Future Vol, veh/h | 49 | 14 | 5 | 15 | 9 | 34 | 33 | 917 | 6 | 59 | 1118 | 32 |
| Conflicting Peds, \#/hr | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Stop | Stop | Stop | Stop | Stop | Stop | Free | Free | Free | Free | Free | Free |
| RT Channelized | - | - | None |
| Storage Length | 50 | - | - | 0 | - | - | 125 | - | - | 100 | - | - |
| Veh in Median Storage, \# | \# | 1 | - | - | 1 | - | - | 0 | - | - | 0 | - |
| Grade, \% | - | 0 | - | - | 0 | - | - | 0 | - | - | 0 | - |
| Peak Hour Factor | 93 | 93 | 93 | 93 | 93 | 93 | 93 | 93 | 93 | 93 | 93 | 93 |
| Heavy Vehicles, \% | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 1 | 0 | 2 | 1 | 3 |
| Mvmt Flow | 53 | 15 | 5 | 16 | 10 | 37 | 35 | 986 | 6 | 63 | 1202 | 34 |

Minor Lane/Major Mvmt	NWL	NWT	NWR EBLn1 EBLn2WBLn1WBLn2	SEL	SET	SER			
Capacity (veh/h)	693	-	-	131	134	104	269	571	-

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds 300s $\quad+$: Computation Not Defined \quad : All major volume in platoon

[^1]| Intersection | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Int Delay, s/veh | 0.8 | | | | | |
| Movement | EBL | EBT | WBT | WBR | SBL | SBR |
| Lane Configurations | | \uparrow | F | | M | |
| Traffic Vol, veh/h | 5 | 74 | 54 | 5 | 5 | 4 |
| Future Vol, veh/h | 5 | 74 | 54 | 5 | 5 | 4 |
| Conflicting Peds, \#lhr | 0 | 0 | 0 | 0 | 0 | 0 |
| Sign Control | Free | Free | Free | Free | Stop | Stop |
| RT Channelized | - | None | - None | - | None | |
| Storage Length | - | - | - | - | 0 | - |
| Veh in Median Storage, $\#$ | - | 0 | 0 | - | 0 | - |
| Grade, \% | - | 0 | 0 | - | 0 | - |
| Peak Hour Factor | 93 | 93 | 93 | 93 | 93 | 93 |
| Heavy Vehicles, $\%$ | 0 | 1 | 4 | 0 | 0 | 0 |
| Mvmt Flow | 5 | 80 | 58 | 5 | 5 | 4 |

Intersection						
Int Delay, s/veh	1.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		$\mathbf{4}$	F		Mr	
Traffic Vol, veh/h	12	67	51	1	2	8
Future Vol, veh/h	12	67	51	1	2	8
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	0	1	4	0	0	0
Mvmt Flow	13	72	55	1	2	9

Intersection						
Int Delay, s/veh	0.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	F			
Traffic Vol, veh/h	7	62	48	0	0	4
Future Vol, veh/h	7	62	48	0	0	4
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	- None	-	None	
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, $\%$	-	0	0	-	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, $\%$	0	1	4	0	0	0
Mvmt Flow	8	67	52	0	0	4

Intersection						

Capacity Analysis Summary Sheets No-Build Weekday Morning Peak Hour Conditions

Major/Minor	Major1				Minor2	
Conflicting Flow All	34	0	-	0	74	34
Stage 1	-	-	-	-	34	-
Stage 2	-	-	-	-	40	-
Critical Hdwy	4.1	-	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	1591	-	-	-	935	1045
Stage 1	-	-	-	-	994	-
Stage 2	-	-	-	-	988	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1591	-	-	-	935	1045
Mov Cap-2 Maneuver	-	-	-	-	935	-
Stage 1	-	-	-	-	994	-
Stage 2	-	-	-	-	988	-
Approach	EB				SB	
HCM Control Delay, s	0		0		8.6	
HCM LOS					A	
Minor Lane/Major Mvmt		EBL	EBT	WBT WBR SBLn1		
Capacity (veh/h)		1591	-	-	-	1006
HCM Lane V/C Ratio		-	-	-	-	0.006
HCM Control Delay (s)		0	-	-	-	8.6
HCM Lane LOS		A	-	-	-	A
HCM 95th \%tile Q(veh)		0	-	-	-	0

Intersection						
Int Delay, s/veh	0.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		-1	F		Mr	
Traffic Vol, veh/h	2	38	28	0	0	4
Future Vol, veh/h	2	38	28	0	0	4
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, $\%$	0	0	3	0	0	0
Mvmt Flow	2	40	29	0	0	4

Major/Minor	Major1	Major2			Minor2		
Conflicting Flow All	29	0	-	0	73	29	
Stage 1	-	-	-	-	29	-	
Stage 2	-	-	-	-	44	-	
Critical Hdwy	4.1	-	-	-	6.4	6.2	
Critical Hdwy Stg 1	-	-	-	-	5.4	-	
Critical Hdwy Stg 2	-	-	-	-	5.4	-	
Follow-up Hdwy	2.2	-	-	-	3.5	3.3	
Pot Cap-1 Maneuver	1597	-	-	-	936	1052	
\quad Stage 1	-	-	-	-	999	-	
Stage 2	-	-	-	-	984	-	
Platoon blocked, \%		-	-	-			
Mov Cap-1 Maneuver	1597	-	-	-	935	1052	
Mov Cap-2 Maneuver	-	-	-	-	935	-	
Stage 1	-	-	-	-	998	-	
Stage 2	-	-	-	-	984	-	

Approach	EB	WB	SB
HCM Control Delay, s	0.4	0	8.4
HCM LOS			A

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1597	-	-	-1052
HCM Lane V/C Ratio	0.001	-	-	-0.004
HCM Control Delay (s)	7.3	0	-	-
HCM Lane LOS	A	A	-	-
HCM 95th \%tile Q(veh)	0	-	-	-

Intersection						

Capacity Analysis Summary Sheets

 No-Build Weekday Evening Peak Hour Conditions

Minor Lane/Major Mvmt	NWL	NWT	NWR EBLn1 EBLn2WBLn1WBLn2	SEL	SET	SER				
Capacity (veh/h)	681	-	-	127	129	99	261	558	-	-
HCM Lane V/C Ratio	0.093	-	-0.415	0.158	0.163	0.177	0.064	-	-	
HCM Control Delay (s)	10.8	-	-	52.1	38.1	48.3	21.7	11.9	-	-
HCM Lane LOS	B	-	-	F	E	E	C	B	-	-
HCM 95th \%tile Q(veh)	0.3	-	-	1.8	0.5	0.6	0.6	0.2	-	-

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds 300s $\quad+$: Computation Not Defined \quad : All major volume in platoon

Intersection						
Int Delay, s/veh	0.8					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	F		M	
Traffic Vol, veh/h	5	74	54	5	5	4
Future Vol, veh/h	5	74	54	5	5	4
Conflicting Peds, \#lhr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	- None	-	None	
Storage Length	-	-	-	-	0	-
Veh in Median Storage, $\#$	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, $\%$	0	1	4	0	0	0
Mvmt Flow	5	80	58	5	5	4

Intersection						
Int Delay, s/veh	1.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		$\mathbf{4}$	F		Mr	
Traffic Vol, veh/h	12	67	51	1	2	8
Future Vol, veh/h	12	67	51	1	2	8
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, \%	0	1	4	0	0	0
Mvmt Flow	13	72	55	1	2	9

Intersection						
Int Delay, s/veh	0.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	F			
Traffic Vol, veh/h	7	62	48	0	0	4
Future Vol, veh/h	7	62	48	0	0	4
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	- None	-	None	
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, $\%$	-	0	0	-	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, $\%$	0	1	4	0	0	0
Mvmt Flow	8	67	52	0	0	4

Major/Minor	Major1	Major2	Minor2		
Conflicting Flow All	52	0	0	135	52
Stage 1		-		52	
Stage 2		- -		83	
Critical Hdwy	4.1	- -	-	6.4	6.2
Critical Hdwy Stg 1		- -	-	5.4	
Critical Hdwy Stg 2	-	- -	-	5.4	
Follow-up Hdwy	2.2	- -	-	3.5	3.3
Pot Cap-1 Maneuver	1567	- -	-	863	1021
Stage 1		- -	-	976	
Stage 2		- -	-	945	
Platoon blocked, \%		- -	-		
Mov Cap-1 Maneuver	1567	- -	-	859	1021
Mov Cap-2 Maneuver	-	- -	-	859	
Stage 1		- -	-	971	
Stage 2	-	- -	-	945	

	EB	WB	SB
Approach			
HCM Control Delay, s	0.7	0	8.5
HCOS			A

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1
Capacity (veh/h)	1567	-	-	-1021
HCM Lane V/C Ratio	0.005	-	-	-0.004
HCM Control Delay (s)	7.3	0	-	-8.5
HCM Lane LOS	A	A	-	-
HCM 95th \%tile Q(veh)	0	-	-	-
A	0			

Intersection						

Capacity Analysis Summary Sheets
 Projected Weekday Morning Peak Hour Conditions

Minor Lane/Major Mvmt	NWL	NWT	NWR EBLn1	EBLn2WBLn1WBLn2	SEL	SET	SER		
Capacity (veh/h)	704	-	-	196	398	265	375	1066	-

Intersection						
Int Delay, s/veh	0.6					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		-1	F		Mr	
Traffic Vol, veh/h	0	40	35	1	2	4
Future Vol, veh/h	0	40	35	1	2	4
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, \%	0	0	3	0	0	0
Mvmt Flow	0	42	37	1	2	4

Major/Minor M	Major1				inor2	
Conflicting Flow All	38	0	-	0	80	38
Stage 1	-	-	-	-	38	-
Stage 2	-	-	-	-	42	-
Critical Hdwy	4.1	-	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	1585	-	-	-	927	1040
Stage 1	-	-	-	-	990	-
Stage 2	-	-	-	-	986	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1585	-	-	-	927	1040
Mov Cap-2 Maneuver	-	-	-	-	927	-
Stage 1	-	-	-	-	990	-
Stage 2	-	-	-	-	986	-
Approach	EB				SB	
HCM Control Delay, s	0		0		8.6	
HCM LOS					A	
Minor Lane/Major Mvmt		EBL	BT	WBT	WBR	SBLn1
Capacity (veh/h)		1585	-	- -	-	999
HCM Lane V/C Ratio		-	-	-	-	0.006
HCM Control Delay (s)		0	-	-	-	8.6
HCM Lane LOS		A	-	-	-	A
HCM 95th \%tile Q(veh)		0	-	-	-	0

Intersection						
Int Delay, s/veh	0.6					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		-1	F		Mr	
Traffic Vol, veh/h	2	40	32	0	0	4
Future Vol, veh/h	2	40	32	0	0	4
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, $\%$	0	0	3	0	0	0
Mvmt Flow	2	42	34	0	0	4

Major/Minor	Major1		Major2		inor2	
Conflicting Flow All	34	0	-	0	80	34
Stage 1	-	-	-	-	34	-
Stage 2	-	-	-	-	46	-
Critical Hdwy	4.1	-	-	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	2.2	-	-	-	3.5	3.3
Pot Cap-1 Maneuver	1591	-	-	-	927	1045
Stage 1	-	-	-	-	994	-
Stage 2	-	-	-	-	982	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1591	-	-	-	926	1045
Mov Cap-2 Maneuver	-	-	-	-	926	-
Stage 1	-	-	-	-	993	-
Stage 2	-	-	-	-	982	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.3		0		8.5	
HCM LOS					A	
Minor Lane/Major Mvmt		EBL	EBT	WBT WBR SBLn1		
Capacity (veh/h)		1591	-	-	-	1045
HCM Lane V/C Ratio		0.001	-	-	-	0.004
HCM Control Delay (s)		7.3	0	-	-	8.5
HCM Lane LOS		A	A	-	-	A
HCM 95th \%tile Q(veh)		0	-	-	-	0

Intersection						

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	44	0	84	43
Stage 1	-	-	-	-	43	-
Stage 2	-	-	-	-	41	-
Critical Hdwy	-	-	4.1	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1577	-	923	1033
Stage 1	-	-	-	-	985	-
Stage 2	-	-	-	-	987	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1577	-	923	1033
Mov Cap-2 Maneuver	-	-	-	-	923	-
Stage 1	-	-	-	-	985	-
Stage 2	-	-	-	-	987	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		8.9	
HCM LOS					A	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL WBT	
Capacity (veh/h)		923	-	-	1577	-
HCM Lane V/C Ratio		0.006	-	-	-	-
HCM Control Delay (s)		8.9	-	-	0	-
HCM Lane LOS		A	-	-	A	-
HCM 95th \%tile Q(veh)		0	-	-	0	-

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	42	0	70	41
Stage 1	-	-	-	-	41	-
Stage 2	-	-	-	-	29	-
Critical Hdwy	-	-	4.1	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1580	-	939	1036
Stage 1	-	-	-	-	987	-
Stage 2	-	-	-	-	999	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1580	-	939	1036
Mov Cap-2 Maneuver	-	-	-	-	939	-
Stage 1	-	-	-	-	987	-
Stage 2	-	-	-	-	999	-
Approach	NB		SB		NW	
HCM Control Delay, s	0		0		8.8	
HCM LOS					A	
Minor Lane/Major Mvmt		NBT	NBRNWLn1		SBL	SBT
Capacity (veh/h)		-	-	957	1580	-
HCM Lane V/C Ratio		-	-	0.005	-	-
HCM Control Delay (s)		-	-	8.8	0	-
HCM Lane LOS		-	-	A	A	-
HCM 95th \%tile Q(veh)		-	-	0	0	-

Capacity Analysis Summary Sheets Projected Weekday Evening Peak Hour Conditions

Minor Lane/Major Mvmt	NWL	NWT	NWR	EBLn1	EBLn2V	BLn1V	VBLn2	SEL	SET	SER	
Capacity (veh/h)	681	-	-	122	123	97	268	556	-	-	
HCM Lane V/C Ratio	0.093	-		0.432	0.175	0.2	0.189	0.073	-	-	
HCM Control Delay (s)	10.8	-		55.3	40.4	51.1	21.5	12	-	-	-
HCM Lane LOS	B	-		F	E	F	C	B	-		
HCM 95th \%tile Q(veh)	0.3			1.9	0.6	0.7	0.7	0.2	-		
Notes											
\sim : Volume exceeds capacity	\$: Delay exceeds 300s				+: Computation Not Defined				*: All major volume in platoon		

Intersection						
Int Delay, s/veh	0.7					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		A	F			
Traffic Vol, veh/h	7	67	51	0	0	4
Future Vol, veh/h	7	67	51	0	0	4
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	- None	-	None	
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, $\%$	-	0	0	-	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, $\%$	0	1	4	0	0	0
Mvmt Flow	8	72	55	0	0	4

Intersection						

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	95	0	160	93
Stage 1	-	-	-	-	93	-
Stage 2	-	-	-	-	67	-
Critical Hdwy	-	-	4.1	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1512	-	836	970
Stage 1	-	-	-	-	936	-
Stage 2	-	-	-	-	961	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	1512	-	836	970
Mov Cap-2 Maneuver	-	-	-	-	836	-
Stage 1	-	-	-	-	936	-
Stage 2	-	-	-	-	961	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		9.3	
HCM LOS					A	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		836	-	-	1512	-
HCM Lane V/C Ratio		0.005	-	-	-	-
HCM Control Delay (s)		9.3	-	-	0	-
HCM Lane LOS		A	-	-	A	-
HCM 95th \%tile Q(veh)		0	-	-	0	-

Intersection						
Int Delay, s/veh	0.3					
Movement	NWL	NWR	NET	NER	SWL	SWT
Lane Configurations	Mr		\uparrow			$\neq 1$
Traffic Vol, veh/h	3	0	62	5	1	48
Future Vol, veh/h	3	0	62	5	1	48
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, $\%$	0	0	1	0	0	4
Mvmt Flow	3	0	67	5	1	52

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	124	70	0	0	72	0
Stage 1	70	-	-	-	-	-
Stage 2	54	-	-	-	-	-
Critical Hdwy	6.4	6.2	-	-	4.1	-
Critical Hdwy Stg 1	5.4	-	-	-	-	-
Critical Hdwy Stg 2	5.4	-	-	-	-	-
Follow-up Hdwy	3.5	3.3	-	-	2.2	-
Pot Cap-1 Maneuver	876	998	-	-	1541	-
Stage 1	958	-	-	-	-	-
Stage 2	974	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	875	998	-	-	1541	-
Mov Cap-2 Maneuver	875	-	-	-	-	-
Stage 1	957	-	-	-	-	-
Stage 2	974	-	-	-	-	-
Approach	NW		NE		SW	
HCM Control Delay, s	9.1		0		0.1	
HCM LOS	A					
Minor Lane/Major Mvmt		NET NERNWLn1 SWL SWT				
Capacity (veh/h)		- - 8751541				-
HCM Lane V/C Ratio		-	-	0.004	0.001	-
HCM Control Delay (s)		-	-	9.1	7.3	0
HCM Lane LOS		-	-	A	A	A
HCM 95th \%tile Q(veh)		-	-	0	0	-

Parking Occupancy Surveys

Table 6
PARKING OCCUPANCY SURVEYS

Time	Villas of Lake in the Hills (Lake in the Hills)		Pheasant Ridge Hunter Apartments (Orland Hills)	
	Friday	Saturday	Friday	Saturday
6:00 AM	67	66	166	148
7:00 AM	65	64	142	145
8:00 AM	55	63	142	138
9:00 AM	52	62	138	131
10:00 AM	51	55	130	123
2:00 PM	44	48	109	94
3:00 PM	43	46	108	94
4:00 PM	43	54	109	85
5:00 PM	43	50	85	87
6:00 PM	55	57	97	88
7:00 PM	55	58	98	110
8:00 PM	55	61	93	122
9:00 PM	61	63	123	139
10:00 PM	63	56	148	149
Inventory	132	132	282	282

[^0]: ${ }^{1}$ IDOT DISCLAIMER: The motor vehicle crash data referenced herein was provided by the Illinois Department of Transportation. Any conclusions drawn from analysis of the aforementioned data are the sole responsibility of the data recipient(s). Additionally, for coding years 2015 to present, the Bureau of Data Collection uses the exact latitude/longitude supplied by the investigating law enforcement agency to locate crashes. Therefore, location data may vary in previous years since data prior to 2015 was physically located by bureau personnel.

[^1]: 21-088 - Affordable Apartment Development - Arlington Heights
 Existing PM Peak Hour

