RAND ROAD & CHESTNUT AVENUE SITE IMPROVEMENTS

PRELIMINARY STORMWATER REPORT

ENGINEERING | SURVEYING | CONSTRUCTION

Contents:

- 1 Project Overview
- 2 Proposed Conditions
- 3 Stormwater Design
- 4 Volume Control Facilities
- 5 Floodplain, Wetlands, and Riparian Areas
- 6 Site Stormwater Plan Implementation Schedule
- Appendix A Site Exhibits
- Appendix B Existing Drainage Exhibit
- Appendix C Proposed Drainage Exhibit
- Appendix D Stormwater Management Calculations

Project:

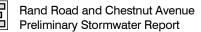
Rand Road & Chestnut Avenue Site Improvements

Location:

Southeast Corner of Rand Road and Chestnut Avenue Arlington Heights, Illinois

Prepared For:

Arlington Performance Center 315 W. Rand Road Arlington Heights, IL 60004


Date:

September 21, 2023 February 16, 2024 April 12, 2024

Prepared By: Kim Lask, P.E., PTOE, CFM Haeger Project No.: 22-253

100 East State Parkway, Schaumburg, IL 60173 · tel 847.394.6600 fax 847.394.6608 haegerengineering.com

1 PROJECT OVERVIEW

The total parcel area is 1.060 acres and is located at the southeast corner of Rand Road and Chestnut Avenue in Arlington Heights, Illinois. The property is bordered on the west by Chestnut Avenue, on the northeast by Rand Road, and on the southeast by a commercial development. The PIN's are 03-18-401-20 and 03-18-401-021.

The north side of the property is currently an auto repair center, and the south side is a single-family home. The proposed development will subdivide the property into two lots. Lot 1 contains the auto repair center (APC) that is proposed to remain. Parking and landscaping will be added. Lot 2 will contain a 5-unit row home development with associated parking lot, utilities, and underground detention basin that will serve Lot 2 and the disturbed area of Lot 1. Improvements on Chestnut Avenue include roadway widening with curb and gutter and sidewalk on the east side of the road. Improvements in the Rand Road right-of-way include replacing parkway pavement with green space and replacing sidewalk along the property frontage.

2 PROPOSED CONDITIONS

The development area is 0.625, and is reflected on the **Proposed Drainage Exhibit** in *Appendix C*. Below is a summary of the existing and proposed land coverage breakdown for the development area.

Development Area	Area	Impervious Area		Pervious Area	
Development / rea	(ac)	(ac)	(%)	(ac)	(%)
Existing Conditions	0.625	0.223	35.7	0.402	64.3
Proposed Development	0.625	0.378	60.5	0.247	39.5
Difference		+0.155		-0.155	

The impervious area will increase by 0.155 ac. (6,756 sf) with the proposed development.

3 STORMWATER DESIGN

Since the property is under three acres, stormwater detention is not required per Metropolitan Water Reclamation District's Watershed Management Ordinance (WMO). Stormwater detention is required in accordance with Village of Arlington Heights Village Engineer and Development Detention Calculation Verification spreadsheet. Detention was calculated for the entire subdivision area of 1.06 ac. which includes development area and existing area to remain unchanged. Based on the calculations, 0.392 ac.ft. of detention is required for the entire subdivision. Detention was also calculated for the development area of 0.625 ac. Based on the calculations, 0.205 ac.ft. of detention is required with a 1.29-inch restrictor.

An underground detention vault is proposed with a storage volume of 0.206 ac.ft. The remaining detention required, 0.187 ac.ft. (0.392 ac.ft. minus 0.205 ac.ft.) will be paid as fee-in-lieu of detention. The bottom of the detention vault is at elevation 687.4 and the high-water level is at 694.50. A minimum 2-inch restrictor will be

installed in an outlet control structure downstream of the detention vault. Storm sewer will be installed to collect runoff from the development area that will discharge to the underground detention vault. Calculations are included in *Appendix D*.

A portion of the APC site (0.268 ac.) currently sheet drains directly to Rand Road. Bioswales are proposed at the end islands to capture and filter over half of the runoff. See the Proposed Drainage Exhibit in *Appendix C* that illustrates the area that is tributary to the bioswales. Calculations are included in *Appendix D*.

4 VOLUME CONTROL FACILITIES

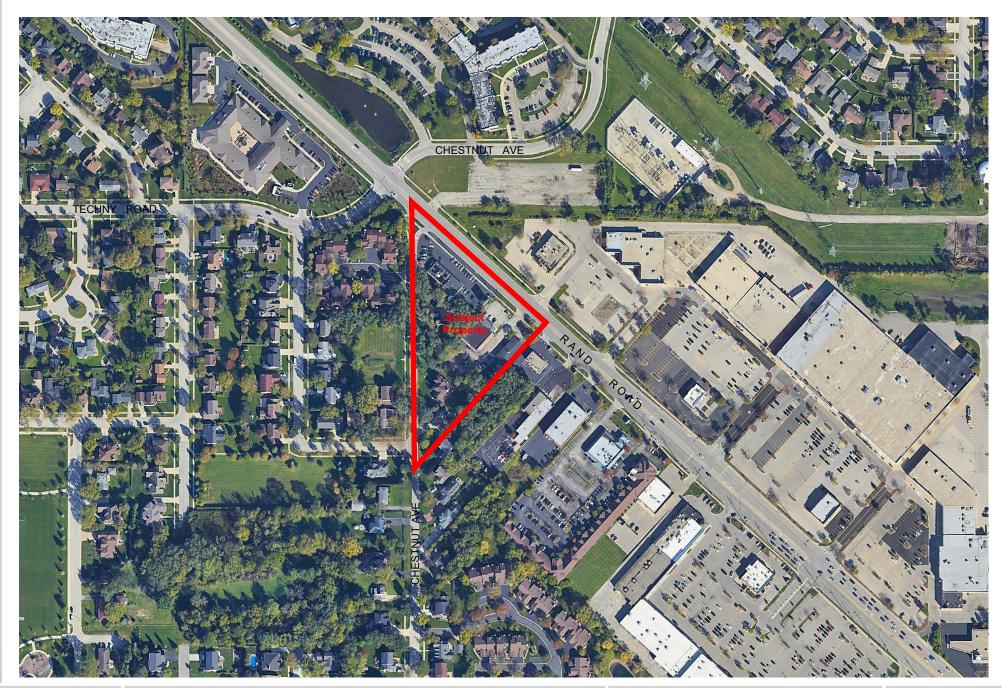
The entire development area will be tributary to the volume control basin. Volume control is provided for the development impervious area, 0.378 ac. The required volume control is 0.032 ac.ft., and the volume proposed is 0.033 ac.ft. See *Appendix D* for volume control calculations.

5 FLOOD PROTECTION, WETLANDS, AND RIPARIAN AREAS

Per FEMA mapping, there are no floodways, floodplains, or riparian areas located in the development area. There are no wetlands or special flood hazard areas located within 100' of the site. For additional information, please see the FEMA Exhibit and NWI Exhibit included in this submittal.

6 SITE STORMWATER PLAN IMPLEMENTATION SCHEDULE

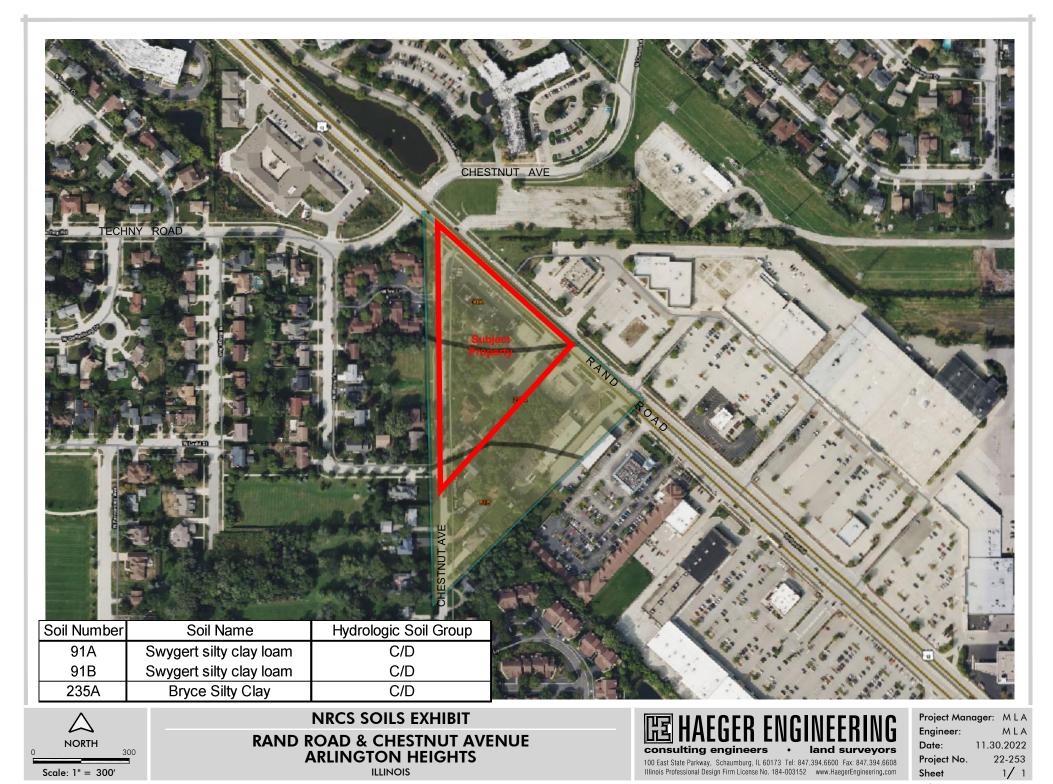
The following sequence will be used in the construction of the site stormwater management system.

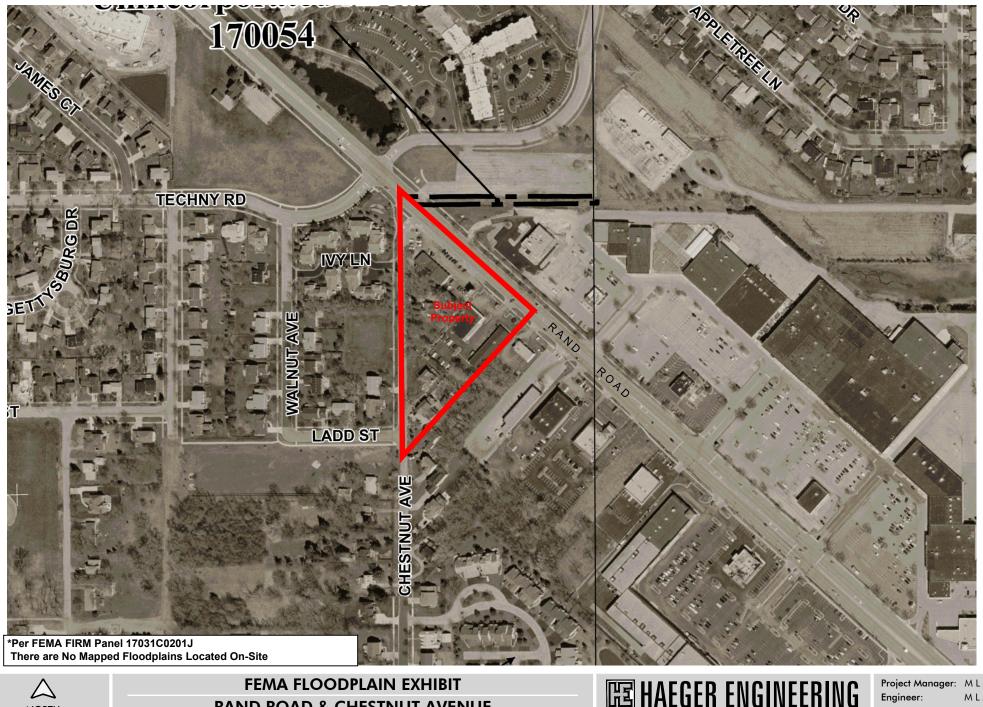

- 1) Installation of silt fence, erosion control measures and stabilized construction entrance.
- 2) Construction of detention vault and storm sewers.
- 3) Grading and paving including paved overflow routes.
- 3) Seeding and planting

The schedule is weather dependent. Excavation dependent activities require frost-free ground for proper construction. Planting should be completed in the correct season to maximize establishment rates.

APPENDIX A - Exhibits

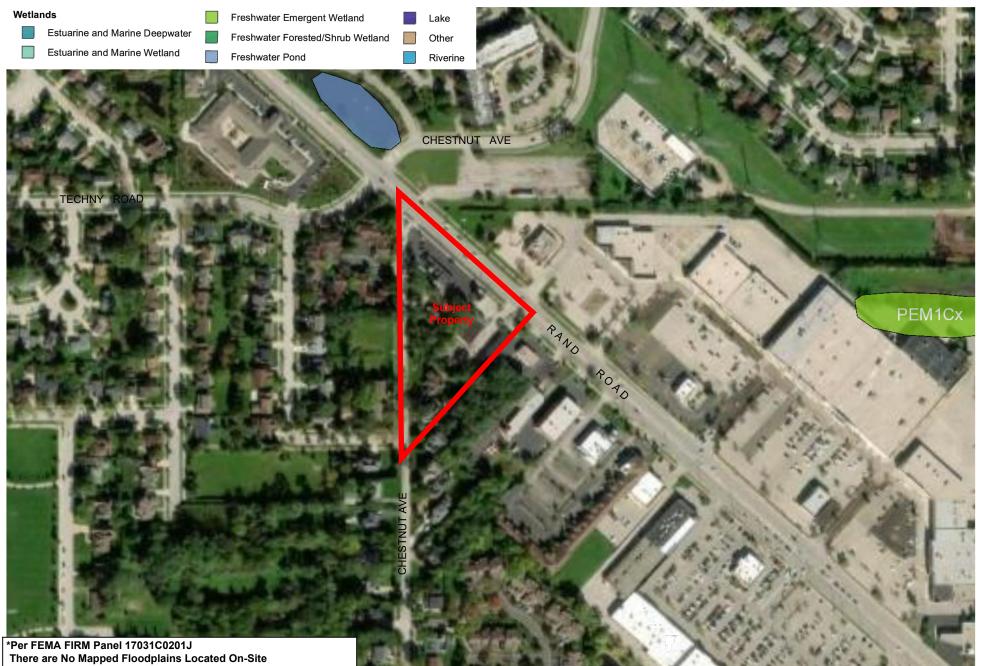
Aerial Exhibit NRCS Exhibit FEMA Exhibit NWI Exhibit


AERIAL EXHIBIT RAND ROAD & CHESTNUT AVENUE ARLINGTON HEIGHTS ILLINOIS

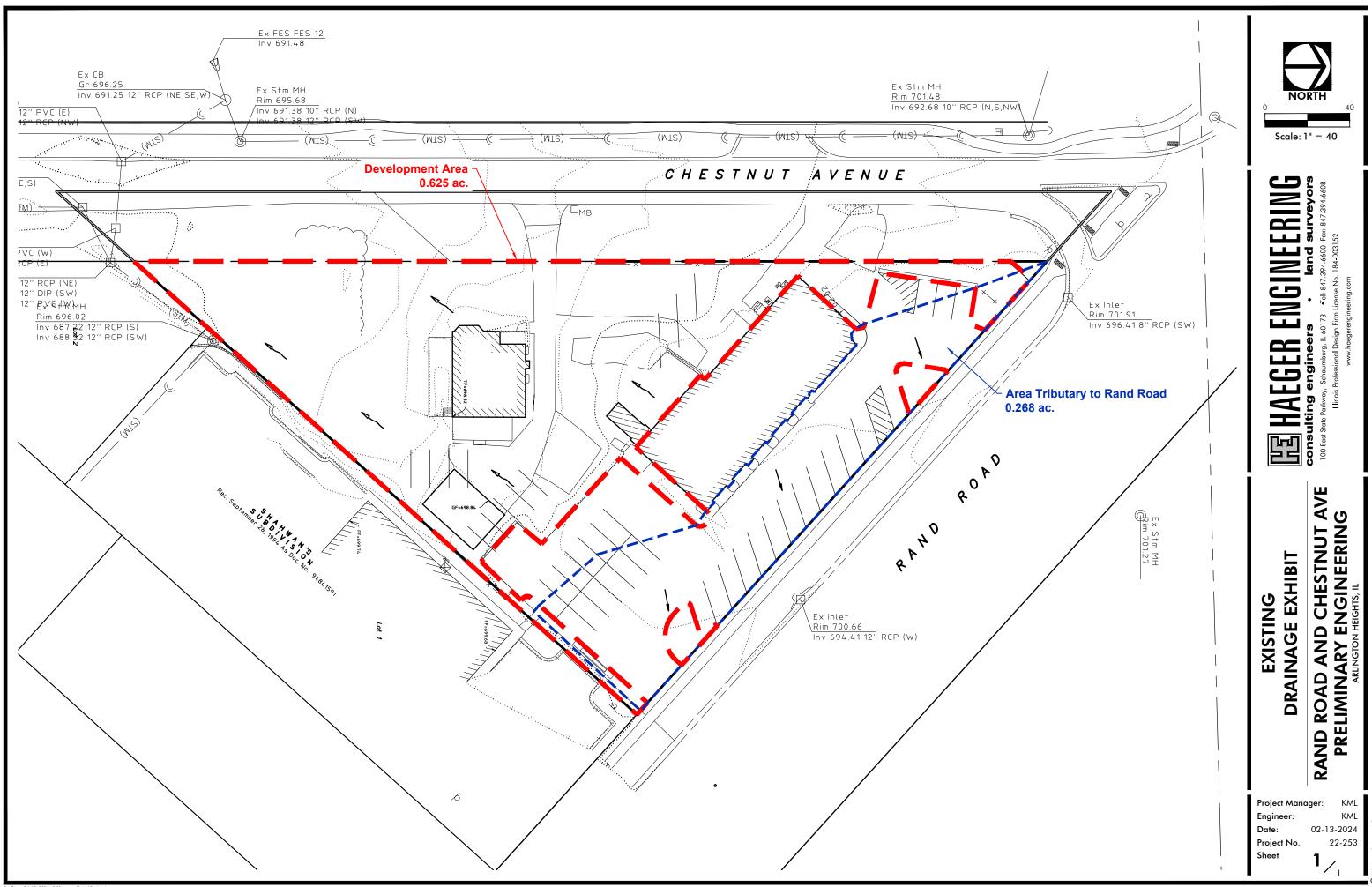


Project Manager: MLA Engineer: MLA 11.30.2022 Date: Project No. 22-253 Sheet 1/1

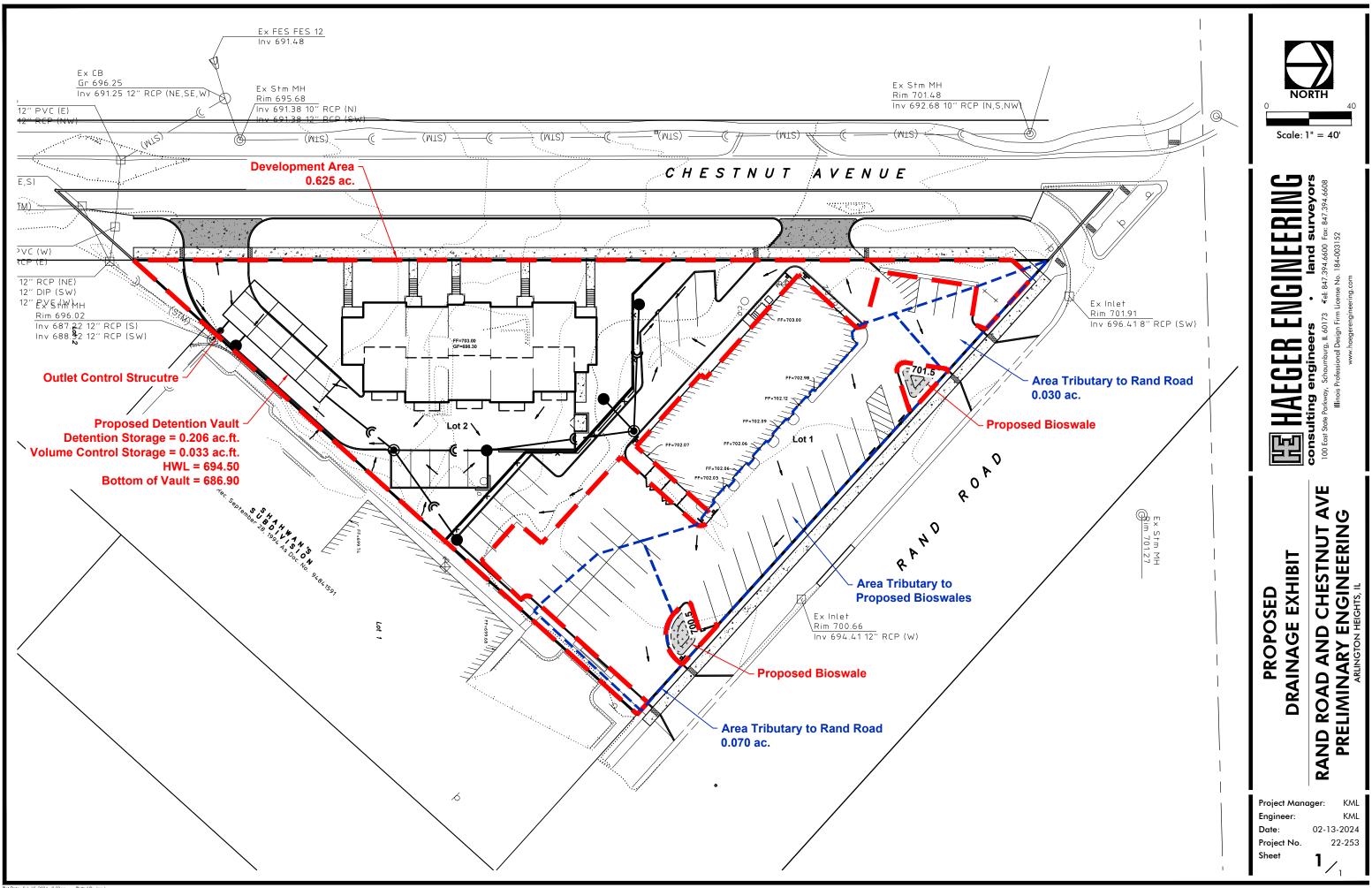
l1


C:\Users\jason-h.HE\appdata\local\temp\AcPublish_23416\22253 - Standard Exhibits.dwg | Nov 30, 2022 - 8:02am | jason-h

FEMA FLOODPLAIN EXHIBIT RAND ROAD & CHESTNUT AVENUE ARLINGTON HEIGHTS Project Manager:M L AEngineer:M L ADate:11.30.2022Project No.22-253Sheet1/1


WETLAND EXHIBIT RAND ROAD & CHESTNUT AVENUE ARLINGTON HEIGHTS

100 East State Parkway, Schaumburg, IL 60173 Tel: 847.394.6600 Fax: 847.394.6608 Illinois Professional Design Firm License No. 184-003152 www.HaegerEngineering.com Project Manager:M L AEngineer:M L ADate:11.30.2022Project No.22-253Sheet1/1


APPENDIX B - Existing Drainage Exhibit

APPENDIX C - Proposed Drainage Exhibit

APPENDIX D - Stormwater Management Calculations

consulting engineers · land surveyors

Detention Storage Calculations

Project:	Rand Road and Chestnut Avenue
Location:	Arlington Heights, IL
Project #:	22-253

100 East State Parkway Schaumburg, Illinois 60173-5300 Tel: 847.394.6600 Fax: 847.394.6608

Prepared: KML

Date: 2/14/2024

A. Existing Land Coverage

Existing Site (Redevelopment Area)	Sq. Ft	Acre	Percentage	CN	C-Value	
Impervious Area =	9,713	0.223	35.7%	98.0	0.95	
Pervious Area =	17,525	0.402	64.3%	80.0	0.50	
Total Area =	27,238	0.625	100.00%	86.4	0.66	

B. Proposed Land Coverage

Proposed Residential	Sq. Ft	Acre	Percentage	CN	C-Value
Impervious Area =	11,528	0.265	63.2%	98.0	0.90
Pervious Area =	6,701	0.154	36.8%	74.0	0.50
Total Area =	18,229	0.418	100.00%	89.2	0.75
Proposed Commercial Disturbed Area	Sq. Ft	Acre	Percentage	CN	C-Value
Impervious Area =	4,941	0.113	54.8%	98.0	0.90
Pervious Area =	4,068	0.093	45.2%	74.0	0.50
VC Area =	0	0.000	0.0%	70.0	0.10
Total Area =	9,009	0.207	100.00%	87.2	0.72
Total Proposed Redevelopment Area	Sq. Ft	Acre	Percentage	CN	C-Value
Impervious Area =	16,469	0.378	60.5%	98.0	0.90
Pervious Area =	10,769	0.247	39.5%	74.0	0.50
VC Area =	0	0.000	0.0%	70.0	0.10
Total Area =	27,238	0.625	100.00%	88.5	0.74

• consulting engineers land surveyors

Detention Storage Calculations

Project:	Rand Road and Chestnut Avenue
Location:	Arlington Heights, IL
Project #:	22-253

100 East State Parkway Schaumburg, Illinois 60173-5300 Tel: 847.394.6600 Fax: 847.394.6608

Prepared: KML

Date: 2/14/2024

C. Required Volume Control Storage

Development Impervious Area =	0.378 ac
Required Volume Control Storage =	0.032 ac-ft

Volume Control Storage Provided = 0.033 af

	Surface Area		Depth			Volume Provided
Volume Type	(sq.ft.)	Elevation	(ft.)	Porosity	Storage Volume	(cu.ft.)
V _A : Vault Storage	1,263.00	687.70	0.3	1	1.00 x 0.5 x V _A	189.45
(Below the Outlet)	1,263.00	687.40				
V _B : Course	351.00	687.70	0.3	0.36	0.50 x 0.36 x V _B	18.95
Aggregate (Above	351.00	687.40				
V _c : Vault Storage	1,263.00	687.40	0.5	1	1.00 x V _C	631.50
(Below U.D. Invert)	1,263.00	686.90				
V _D : Course	1,615.00	686.90	1	0.36	0.36 x VD	581.4
Aggregate	1,615.00	685.90				
-						1421.30

0.033 af

consulting engineers · land surveyors

Detention Storage Calculations

Project:	Rand Road and Chestnut Avenue
Location:	Arlington Heights, IL
Project #:	22-253

D. Detention Storage

Detention Storage Required (from Arlington Heights spreadsheet) =

Detention Storage Provided in Underground Vault System =

Detention Storage Provided in Vault (50% Volume for 687.50 to 687.70)

Elevation (ft)	Volume / FT (cu.ft./ft)	Volume (cu.ft.)	Cummulative Volume (cu.ft.)	Cummulative Volume (ac.ft.)	
687.40	1,263.00	0.0	0	0.000	
687.70	1,263.00	378.9	378.90	0.009	

Detention Storage Provided in Vault (100% Volume 687.7 to 694.5)

Elevation (ft)	Volume / FT (sq.ft.)	Volume (cu.ft.)	Cummulative Volume (cu.ft.)	Cummulative Volume (ac.ft.)
687.70	1,263.00	0.0	0	0.000
688.00	1,263.00	378.9	378.90	0.009
689.00	1,263.00	1263.0	1,641.90	0.038
690.00	1,263.00	1263.0	2,904.90	0.067
691.00	1,263.00	1263.0	4,167.90	0.096
692.00	1,263.00	1263.0	5,430.90	0.125
693.00	1,263.00	1263.0	6,693.90	0.154
694.00	1,263.00	1263.0	7,956.90	0.183
694.50	1,263.00	631.5	8,588.40	0.197

Total Stage - Storage for Detention Vault

Elevation (ft)	Total Volume (cu.ft.)	Total Volume (ac.ft.)
687.40	0.00	0.0
687.70	378.90	0.009
688.00	757.80	0.017
689.00	2,020.80	0.046
690.00	3,283.80	0.075
691.00	4,546.80	0.104
692.00	5,809.80	0.133
693.00	7,072.80	0.162
694.00	8,335.80	0.191
694.50	8,967.30	0.206

Prepared: KML

Date: 2/14/2024

0.205 ac.ft.

0.206 ac.ft.

consulting engineers land surveyors

Detention Storage Calculations

Project:	Rand Road and Chestnut Avenue
Location:	Arlington Heights, IL
Project #:	22-253

E. Existing Runoff to Rand Road

Existing Area Tributary to Rand Road Percentage CN C-Value Sq. Ft Acre Impervious Area = 11,681 0.268 100.0% 98.0 0.95 Pervious Area = 0 0.000 0.0% 80.0 0.50 Total Area = 0.268 0.95 11,681 100.00% 98.0 Time of Concentration:

Storm Event	Rainfall Intensity (in/hr)	Exist. Runoff to Rand Road (cfs)
10-Year	7.44	1.895
50-Year	10.80	2.751
100-Year	12.36	3.149

5 min.

F. Proposed Runoff to Rand Road

roposed Area Tribut	Sq. Ft	Acre	Percentage	CN	C-Value	
	Impervious Area =	3,910	0.090	90.2%	98.0	0.95
	Pervious Area =	427	0.010	9.8%	80.0	0.50
	Total Area =	4,337	0.100	100.00%	96.2	0.91
	Time of Concentration:	5	min.			
		Rainfall I	•	Prop. Rui to Rand R		
_	Storm Event	(in/l	hr)	(cfs)		_
	10-Year	7.4	14	0.671		
	50-Year	10.80 12.36		0.974 1.115		
-	100-Year					_
roposed Area Tribut	tary to Bioswales	Sq. Ft	Acre	Percentage	CN	C-Value
	Impervious Area =	6,744	0.155	91.7%	98.0	0.95
	Pervious Area =	607	0.014	8.3%	80.0	0.50
	Total Area =	7,351	0.169	100.00%	96.5	0.91
	Time of Concentration:	5	min.			
_	Storm Event	Rainfall I	ntensity	Prop. Rur	noff	
-	10-Year	7.4	14	1.146		
	50-Year	10.	80	1.664		
	100-Year	12.	26	1.904		

100 East State Parkway Schaumburg, Illinois 60173-5300 Tel: 847.394.6600 Fax: 847.394.6608

Prepared: KML

Date: 2/14/2024

consulting engineers · land surveyors

Detention Storage Calculations

Project:	Rand Road and Chestnut Avenue
Location:	Arlington Heights, IL
Project #:	22-253

100 East State Parkway Schaumburg, Illinois 60173-5300 Tel: 847.394.6600 Fax: 847.394.6608

Prepared: KML

Date: 2/14/2024

G. Storage in Bioswales on APC Site

	Surface Area		Depth			Volume
Volume Type	(sq.ft.)	Elevation	(ft.)	Porosity	Storage Volume	Provided
V _A : Surface Storage	286.10	700.50	1	1	1.00 x 0.5 x V _A	87.50
	63.90	699.50				
V _B : Soil Media Mix	63.90	699.50	1.5	0.25	0.50 x 0.25 x VB	11.98
	63.90	698.00				
V _c : Course	63.90	698.00	0	0.36	0.50 x 0.36 x VC	0.00
Aggregate (Above	63.90	698.00				
V _D : Course	63.90	698.00	1	0.36	0.36 x VD	23.004
Aggregate	63.90	697.00				
						122.49
•						0.003 af

Development Detention Calculation Verification: PC # 23-

Site Requirements (Entire Subdivision)									
	Site Allowed Release Rate (Area x 0.18cfs Weighted "C" Fa			,	1.060 0.191 0.845	Acres cfs	Pervious= Impervious= Water= Synth Turf=	0.813 0.000	Acres Acres Acres Acres
А	В	С	D Updated	E	F	G	Н	J	К
Runoff Factor "C"	Storm [Duration	Rainfall Intensity "I"	Site Area "A"	Inflow Rate (CxIxA)	Release Rate	Storage Rate	Storage	Required
	(min)	(hrs)	(in/hr)	(acres)	(cfs)	(cfs)	(cfs)	(cu-ft)	(Ac-ft)
0.845 0.845	5 10 15 20 30 40 50 60 90 120 180 240 300 360 420 480 540	0.083 0.167 0.25 0.33 0.50 0.67 0.83 1.00 1.50 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00	12.34 10.80 9.26 7.97 6.34 5.27 4.52 4.03 3.03 2.49 1.83 1.48 1.25 1.07 0.97 0.87 0.79	1.060 1.060 1.060 1.060 1.060 1.060 1.060 1.060 1.060 1.060 1.060 1.060 1.060 1.060 1.060 1.060 1.060 1.060	11.05 9.67 8.29 7.14 5.68 4.72 4.05 3.61 2.71 2.23 1.64 1.33 1.12 0.96 0.87 0.78 0.71	0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191	10.86 9.48 8.10 6.95 5.49 4.53 3.86 3.42 2.52 2.04 1.45 1.13 0.93 0.77 0.68 0.59 0.52	3246 5701 7293 8254 9878 10925 11526 12307 13624 14683 15640 16339 16715 16576 17081 16942 16738	0.131 0.167 0.189 0.227 0.251 0.265 0.283 0.313 0.337 0.359 0.375 0.384 0.381 0.392 0.389
0.845 0.845 0.845 0.845 0.845 0.845	540 600 660 720 1080 1440	9.00 10.00 11.00 12.00 18.00 24.00	0.79 0.72 0.67 0.62 0.45 0.36	1.060 1.060 1.060 1.060 1.060 1.060	0.71 0.64 0.60 0.56 0.40 0.32 A*D*E	0.191 0.191 0.191 0.191 0.191 0.191	0.52 0.45 0.41 0.36 0.21 0.13 F-G	16738 16341 16201 15739 13742 11357 C*H*3600	0.375 0.372 0.361

0.392 Acre-Ft Max Volume = =

17,081 cu-ft

Orifice Computation

1) Allowed Release Rate, Q(cfs)	0.191		Free Flow	Submerged Flow
2) High Water Elevation	694.50		694.50	0.00
3) Outfall Water Elevation	688.22		-	0.00
4) Invert Elevation	688.00		688.00	0.00
5) Diameter of Restrictor (inch)	1.44		2	
6) Cross Section Area (sq ft)	-		0.022	0.000
7) Head (ft) h =	6.44		6.42	0.00
8) Discharge Coefficient	0.61		0.61	0.00
Square Edge 0.79 - 0.82				
Round Edge 0.93 - 0.98				
Sharp Edge 0.58 - 0.64	< Most commo	on=0.61		
Projecting 0.50			Q = C*a*(sq	rt 2*g*h)
				- /
Orifice area: a = Q				
C*(sqrt 2*g*h)		Q (cfs) =	0.27	0.000
a(sq ft) = 0.015 dia(in) =	1.68			

Village of Arlington Heights Public Works Department **Engineering Division**

Development Detention Calculation Verification: PC # 23-

Site Requirements

	Allowed	Release	Rate (Area x (Weighted	Site Area = 0.18cfs/Ac) = "C" Factor =	0.625 0.113 0.772	Acres cfs	Pervious= Impervious= Water= Synth Turf=	0.378 0.000	Acres Acres Acres Acres
А	В	С	D	E	F	G	н	J	К
Runoff Factor "C"	Storm [Duration	Updated Rainfall Intensity "I"	Site Area "A"	Inflow Rate (CxIxA)	Release Rate	Storage Rate	Storage	Required
	(min)	(hrs)	(in/hr)	(acres)	(cfs)	(cfs)	(cfs)	(cu-ft)	(Ac-ft)
0.772 0.772	5 10 15 20 30 40 50 60 90 120 180 240 300 360 420 480 540 600 660 720 1080 1440	0.083 0.167 0.25 0.33 0.50 0.67 0.83 1.00 1.50 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 18.00 24.00	$12.34 \\ 10.80 \\ 9.26 \\ 7.97 \\ 6.34 \\ 5.27 \\ 4.52 \\ 4.03 \\ 3.03 \\ 2.49 \\ 1.83 \\ 1.48 \\ 1.25 \\ 1.07 \\ 0.97 \\ 0.87 \\ 0.79 \\ 0.72 \\ 0.67 \\ 0.62 \\ 0.45 \\ 0.36 \\ 0.36 \\ 0.36 \\ 0.80 \\ 0.36 \\ 0.81 $	0.625 0.625	5.95 5.21 4.47 3.85 3.06 2.54 2.18 1.94 1.46 1.20 0.88 0.71 0.60 0.52 0.47 0.42 0.38 0.35 0.32 0.30 0.22 0.17	0.113 0.113	5.84 5.10 4.35 3.73 2.95 2.43 2.07 1.83 1.35 1.09 0.77 0.60 0.49 0.40 0.36 0.31 0.27 0.23 0.21 0.10 0.06	1745 3065 3919 4434 5303 5861 6179 6593 7284 7837 8316 8656 8822 8711 8947 8835 8689 8438 8438 8327 8042 6747 5244	0.070 0.090 0.102 0.122 0.135 0.142 0.151 0.167 0.180 0.191 0.199 0.203 0.200 0.205 0.203 0.200 0.205 0.203 0.199 0.194 0.191 0.185 0.155
					A*D*E		F-G	C*H*3600	J/43560
					lax Volume = = omputation	0.205 8,947	Acre-Ft cu-ft		
2) 3) 4) 5) 6) 7)) High Wa) Outfall V) Invert E) Diamete) Cross S) Head (ft) Discharg Square	ater Elev Water Ele levation er of Res ection A ge Coeff e Edge Edge Edge	evation trictor (inch) rea (sq ft) h =	0.113 694.50 688.22 688.00 1.29 - 6.45 0.61			Free Flow 694.50 - 688.00 2 0.022 6.42 0.61 Q = C*a*(sqr	0.00 0.00 0.000 0.00 0.00	
	area: a = a(sq ft) =		Q qrt 2*g*h) dia(in) =	1.29		Q (cfs) =	0.27	0.000	