August 25, 2015

The Moorings of Arlington Heights – Drainage Study

Eriksson Engineering Associates, Ltd.

145 Commerce Drive, Suite A

Grayslake, IL 60030

847.223.4804

601 W. Randolph St., Suite 500 Chicago, IL 60661 312.463.0551

Table of Contents

- Narrative
- Existing Drainage Calculations
 - Existing Drainage Summary
 - Existing West Lake Outfall
 - Existing West Lake Volume
- Proposed Drainage Calculations
 - Proposed Drainage Summary
 - o Proposed Restrictor Calculation
 - Proposed West Lake Volume Calculation
 - Proposed West Lake Detention Requirement
 - Proposed Overflow Calculation
- Storm Sewer Calculations (10-Yr)
- Storm Sewer Calculations (100-Yr)
- Appendix I Tributary Area Exhibit
- Appendix II Storm Sewer HGL Profile (100-Yr)
- Appendix III MWRD Permit No. 787-87

Eriksson Engineering Associates, Ltd.

Narrative

INTRODUCTION

Currently detention is provided for the campus in five separate detention basins: West Lake, Southwest Basin, North Basin, East Lake, and Southeast Basin and are permitted under MWRD Permit No. 87-787. Of the 7.75 acres being affected by the proposed improvements 6.57 acres are tributary to West Lake, the remaining 1.22 acres are tributary to the Southwest Basin.

EXISTING CONDITIONS

In its current state, West Lake outfalls from an existing 10" sewer that is tributary to the Southwest Basin. The release rate of this sewer is calculated to be 3.00 cfs, less than the permitted 3.50 cfs according to MWRD Permit No. 87-787. This release and the existing tributary area of 14.87 acres create a required storage volume of 3.78 acre-feet, less than the available 4.52 acre-feet at an elevation of 689.00. Overflow from West Lake is currently a grassed area to the south of the lake that conveys water to Moorings Drive and the Southwest Basin.

PROPOSED CONDITIONS

Improvements around West Lake will expand the tributary area to encompass 15.23 acres and increase the impervious area by approximately 1 acre. Per Arlington Heights allowable release of 0.18 cfs/acre and the revised tributary area for West Lake, the new allowable release will be 2.74 cfs. Including the new impervious area equates to a new required volume of 4.31 acre-feet. Although the existing lake provides adequate detention, in order to provide adequate freeboard to the proposed Finished Floor Elevations the existing High Water Level will be lowered from 689.00 to 688.25 and the existing footprint will be expanded. Overflow from West Lake will be provided for at weirs in both the Restrictor Manhole and as a 40' grass spillway on the surface to ensure water is directed away from the new Assisted Living building and Resident Fellowship Hall. Restricted flow and Overflow from West Lake will remain tributary to an existing Bypass Swale and Sewer that run along the south of the Site.

Additional flow to the Southwest Basin will be investigated but it is not anticipated that significant improvements will be required.

STORM SEWER

Currently storm water is conveyed to West Lake through two pipe networks. One located to the northwest of the lake that conveys storm water from the north end of the site and one that conveys runoff from the Skilled Care courtyard. Both systems will be impacted by the new building footprints and will be re-routed underneath the connection between the Assisted Living building and Resident Fellowship Hall.

The proposed buildings will also impact existing overland flow routes. New pipe systems tributary to West Lake will be sized to convey runoff from the 100-year rain event.

Calculations

Existing Calculations

DRAINAGE SUMMARY - EXISTING CONDITIONS

Prebysterian Homes - Site Study

By: C. Fish

West Lake - Existing

05/15/15

Total Tributary Area =	14.87	acres
Wet Pond Area =	1.44	acres
Impervious Area =	6.74	acres
Pervious Area =	6.69	acres
Runoff Coefficient (C) =	0.75	
		-
Allowable Release Rate =	3.50	cfs
Actual Release Rate =	3.00	cfs

$C_{pond} =$	1.00
C _{impervious} =	0.95
C _{pervious} =	0.50

Per Arlington Heights Manual of Practice for The Design of Public and Private Improvements

Per MWRD Permit No. 87-787

100-Year Event, Bulletin 70 Rainfall Data

RUNOFF	STORM	RAINFALL	DRAINAGE	INFLOW	RELEASE	STORAGE	STORAGE
FACTOR	DURATION	INTENSITY	AREA	RATE	RATE	RATE	REQUIRED
	(HRS)	(IN/HR)	(ACRES)	(CFS)	(CFS)	(CFS)	(ACRE-FT)
0.75	0.08	11.40	14.87	127.54	3.00	124.55	0.86
0.75	0.17	9.82	14.87	109.87	3.00	106.87	1.47
0.75	0.25	8.20	14.87	91.74	3.00	88.74	1.83
0.75	0.50	5.60	14.87	62.65	3.00	59.66	2.47
0.75	1.00	3.56	14.87	39.83	3.00	36.83	3.04
0.75	2.00	2.23	14.87	24.95	3.00	21.95	3.63
0.75	3.00	1.61	14.87	18.01	3.00	15.02	3.72
0.75	6.00	0.95	14.87	10.63	3.00	7.63	3.78
0.75	12.00	0.55	14.87	6.14	3.00	3.14	3.12
0.75	18.00	0.39	14.87	4.36	3.00	1.37	2.03
0.75	24.00	0.31	14.87	3.47	3.00	0.47	0.93

Calculated	Existing Storage Required =	3.78	acre-ft	
MWRD Permit No. 87-787	Existing Storage Required =	2.15	acre-ft	
Elevation 689.00	Existing Storage Provided =	4.52	acre-ft	

Culvert Capacity C	ert Size = 10 inch Slope = 0.03 ft/ft Ivert Capacity = cfs mal Area: $a = \Pi r^2 = 0.55 ft^2$			
Prebysterian Homes - Site St By: C. Fish	udy		05/15/15	ERIKSSON
Existing Culvert Size =	10 inch			
Existing Pipe Slope =	0.03 ft/ft			ASSOCIATES, LTD.
Required Culvert Capacity =	c	fs		
Cross Sectional Area:				
	a = Π r ² = 0.55 f	ť		
Pipe Flow Capacity (Flowing	Full):			
	n = 0.013			
	$Q = (1.49/n)^* a^* R_h^{2/3*}$ = 6.04 cfs	s ^{1/2}		
	Capacity Of Pipe =	6.04 cfs		

Pipe Flow Capacity (Including Vertical Head):

Length of Pipe = 268 ft. Downstream Inv. = 684 hwl = 689.00 $\triangle h = hwl - Inv. =$ 5 ft.

 $Q_{cap} = (1.49/n)^* A^* R_h^{2/3} (h/L)^{1/2} =$ 3.00 cfs

Storage Volume in Detention Pond Prebysterian Homes - Site Study By: C. Fish

05/15/15

Grade	Area (sq. ft.)	Volume (cu ft.)
685.5	51946	
		79830.56
687	54505	
		56511.48
688	58542	
		60701.54
689	62887	
		65770.61
690	68697	
		34348.50
690.5	68697	

Total Volume =	197043.58	cu ft.
Total Volume =	4.52	acre-ft

Proposed Calculations

DRAINAGE SUMMARY PROPOSED CONDITIONS

Presbyterian Homes Moorings CMF

06/15/15

Proposed Conditions

	Total Property Total Watershee	•	15.23	acres acres				
Proposec	Impervious Wet Pono Pervious	d Area =	1.71	acres acres acres	CN _{impervio} CN _{grav} CN _{pervio}	_{/el} = 100	VILLA C _{impervious} = C _{gravel} = C _{pervious} =	GE 0.95 1.00 0.50
Allowable	Release Rate =	2-Year - -	<mark>0.18</mark> 2.74	cfs/acre cfs	CN % Imp		C =	0.78

	2-YEAR	VILLAGE	
MAXIMUM RESTRICTOR DIAMETER =	-	8.13	in
ACTUAL RESTRICTOR DIAMETER =	0.00	8.00	in
ALLOWABLE RELEASE RATE =	-	2.74	cfs
ACTUAL RELEASE RATE =	0.00	2.66	cfs
DETENTION VOLUME REQUIRED =		4.31	Acre*ft
DETENTION VOLUME PROVIDED =	0.00	4.29	Acre*ft
DETENTION VOLUME PROVIDED =	0.00	4.29	Acre*ft
DETENTION VOLUME PROVIDED = Restrictor Invert=	0.00 685.50		
	685.50) 685.50	

VILLAGE RESTRICTOR SIZING CALCULATIONS

Presbyterian Homes Moorings CMF

2-Year Restrictor

2-year high water elevation = 685.50 $C_D = 0.61$ (constant) G = 32.20 ft/sec² Inv. restrictor = 685.50 $Q_{allowable} = 0.00$ cfs $\Delta h = hwe - Inv. - 1/2$ Dia.

= 0.00 ft.

100-Year Restrictor

100-year high water elevation = $C_D =$		(constant)
G = Inv. restrictor =	32.20 685.50	ft/sec ²
$Q_{allowable} =$	2.74	cfs
Q _{2year} =	0.00	cfs
Therefore: Q _{remaining} =	2.74	cfs
$\triangle h = hwe - Inv 1/2$	Dia.	
=	2.42	ft.

>	Restrictor diameter =	0.000	inches
	D _{restrictor} =	0.000	in
	A _{restrictor} =	0.00	in ²
	$A_{restrictor} = (Q_{allowable}) / (C$	_D (2gh) ^{1/2}	²)
	$Q = C_D A (2gh)^{1/2}$		

Release Rate Based on restrictor diameter

 $Q = C_D A (2gh)^{1/2}$

=

Q_{release} = 0.00 c.f.s.

 $Q = C_D A (2gh)^{1/2}$ $A_{restrictor} = (Q_{allowable}) / (C_D (2gh)^{1/2})$ $A_{restrictor} = 51.87 \text{ in}^2$ $D_{restrictor} = 8.127 \text{ in}$ => Restrictor diameter = 8.000 inches

Release Rate Based on restrictor diameter

$$D_{\text{restrictor}} = 8.00 \text{ in.}$$

$$A_{\text{restrictor}} = 50.24 \text{ in}^2$$

$$Q = C_D A (2gh)^{1/2}$$

$$Q_{\text{release}} = 2.66 \text{ c.f.s.}$$

06/15/15

BASIN VOLUME CALCULATIONS

Presbyterian Homes Moorings CMF

2 Year Restrictor

Dia= 0.000 in $C_{d} = 0.61$ Inv. rest. = 685.50 g = 32.20

ft/sec² in² $A_{rest} = 0.00$

100 Year Restrictor

Dia= 8.000 in $C_{d} = 0.61$ Inv. rest. = 685.50 g = 32.20 ft/sec² in² A_{rest}= 50.27

Dond

Elev	Area (sq. ft.)	Increm. Volume (cu ft.)	Increm. Volume (ac-ft)	Total Volume (ac-ft)	Q(2-Yr) (cfs)	Q(100-Yr) (cfs)	Q(Total) (cfs)
690	83808	81298.22	1.866	7.48	0.00	3.49	3.49
0	0	0.00	0.000	5.61	0.00	0.00	0.00
689	78814	57535.98	1.321	5.61	0.00	3.04	3.04
688.25	74634.25	18484.13	0.424	4.29	0.00	2.66	2.66
688	73241	70515.16	1.619	3.87	0.00	2.52	2.52
0	0	0.00	0.000	2.25	0.00	0.00	0.00
687	67824	98048.67	2.251	2.25	0.00	1.85	1.85
0	0	0.00	0.000	0.00	0.00	0.00	0.00
685.5	62938						

Site High Water Line =	685.50	688.25
100-Year Storage Volume =	0.00	4.29 acre-ft

06/15/15

VILLAGE DETENTION REQUIREMENTS 100-YEAR EVENT

Presbyterian Homes Moorings CMF

Total Tributary Area:	15.23 acre
Total Impervious Area	9.41 acre
Allowable Release Rate Per Acre:	0.18 cfs/acre
Allowable Release Rate:	2.74 cfs
Actual Release Rate:	2.66 cfs
Runoff Coefficient (C):	0.78
100 Year Intensity:	7.58 in

100-Year Event, Bulletin 70 Rainfall Data

RUNOFF	STORM	RAINFALL	DRAINAGE	INFLOW	RELEASE	STORAGE	STORAGE
FACTOR	DURATION	INTENSITY	AREA	RATE	RATE	RATE	REQUIRED
	(HRS)	(IN/HR)	(ACRES)	(CFS)	(CFS)	(CFS)	(ACRE-FT)
0.78	0.08	10.92	15.23	130.33	2.66	127.68	0.84
0.78	0.17	10.02	15.23	119.59	2.66	116.93	1.64
0.78	0.25	8.20	15.23	97.87	2.66	95.21	1.97
0.78	0.50	5.60	15.23	66.84	2.66	64.18	2.65
0.78	1.00	3.56	15.23	42.49	2.66	39.83	3.29
0.78	1.50	2.63	15.23	31.39	2.66	28.73	3.56
0.78	2.00	2.24	15.23	26.73	2.66	24.08	3.98
0.78	3.00	1.62	15.23	19.33	2.66	16.68	4.14
0.78	4.00	1.28	15.23	15.28	2.66	12.62	4.17
0.78	5.00	1.08	15.23	12.89	2.66	10.23	4.23
0.78	6.00	0.95	15.23	11.34	2.66	8.68	4.31
0.78	7.00	0.83	15.23	9.91	2.66	7.25	4.19
0.78	8.00	0.75	15.23	8.95	2.66	6.30	4.16
0.78	9.00	0.68	15.23	8.12	2.66	5.46	4.06
0.78	10.00	0.63	15.23	7.52	2.66	4.86	4.02
0.78	11.00	0.59	15.23	7.04	2.66	4.39	3.99
0.78	12.00	0.55	15.23	6.56	2.66	3.91	3.88
0.78	13.00	0.52	15.23	6.21	2.66	3.55	3.82
0.78	14.00	0.49	15.23	5.85	2.66	3.19	3.69
0.78	15.00	0.46	15.23	5.49	2.66	2.84	3.51
0.78	16.00	0.43	15.23	5.13	2.66	2.48	3.28
0.78	17.00	0.41	15.23	4.89	2.66	2.24	3.14
0.78	18.00	0.39	15.23	4.65	2.66	2.00	2.97
0.78	24.00	0.32	15.23	3.77	2.66	1.11	2.21

Required Storage:

4.31 acre-ft

06/15/15

Bul 70 100yr - 24hr

Emergency Overflow Spillway Calculations

Presbyterian Homes Moorings CMF

06/15/15

100-year Rainfall Event

Tributary Area = 15.23 acre Composite Runoff Coefficient = 0.78 100 year Rainfall Depth (Bulletin 70) = 7.58 inches

100-Year Runoff Rate = 11.34 cfs

Pond Overflow Type = Grass Spillway

Where: L (length) = 40.00 ft. H (head) = 0.25 ft.

Pond Overflow Rate Q = 13.00 cfs

Weir Equation:	$Q = 3.03 L H^{(3/2)}$	(Broad Crested Weir)
Weir Equation:	$Q = 2.60 L H^{(3/2)}$	(Broad Crested Weir)

Concrete Wier Wall Grass Spillway

Hydraflow Storm Sewers Extension for Autodesk® AutoCAD® Civil 3D® Plan

ne To Line End 2 1 3 2	(ft) 157.00	Incr (ac)	Total (ac)	_coeff	Incr	Total			1711	Total Cap V flow full			1				GL Elev Grnd / Rim Elev Lin		1		
End 2		(ac)	(ac)			Total	Inlet	Syst	(I)	1100	iun		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
2 1	157.00		1 · ·	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
3 5 4 5 2 3 4 6 6 10 8 11 1 12 5 13 5	141.00 72.000 116.00 63.000 26.000 65.000 40.000 189.00 98.000 73.000 42.000 38.000 202.00	0 0.00 0 0.00 0 0.00 0 0.19 0 0.51 1.85 0 0.00 0 0.25 0 0.11 1.30 0 0.78 0 0.00	4.99 3.69 2.93 1.08 0.97 0.76 1.85 0.11 1.30 0.78 0.00 0.00	0.00 0.00 0.00 0.75 0.86 0.74 0.00 0.91 0.84 0.78 0.69 0.00 0.00	0.00 0.00 0.00 0.14 0.44 1.37 0.00 0.23 0.09 1.01 0.54 0.00 0.00	3.82 2.81 2.14 0.77 0.68 0.67 1.37 0.09 0.23 0.09 1.01 0.54 0.00 0.00	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	17.4 16.5 16.1 15.2 10.5 11.8 10.0 10.0 10.0 10.0 10.0 10.0	4.8 4.9 5.1 5.8 5.9 5.9 5.9 5.9 5.9 0.0 0.0	28.37 23.84 20.69 14.03 14.08 3.71 8.09 0.49 1.34 0.55 5.99 3.18 4.65 5.47	60.85 43.05 32.98 32.17 20.18 3.86 16.27 7.00 3.86 7.81 8.61 7.55 0.00 5.46	5.42 3.70 3.49 2.33 2.96 5.49 4.59 0.40 2.73 0.57 9.80 4.05 5.92 6.97	48 42 36 30 12 18 15 12 12 12 12 12	0.15 0.16 0.21 0.20 0.21 1.00 2.05 1.00 1.24 4.99 3.83 -1.11 2.00	684.04 684.28 684.50 684.65 684.88 690.20 684.65 684.88 690.46 685.28 687.25 685.01 685.01 685.01	684.28 684.50 684.65 684.88 685.01 690.46 685.98 685.28 692.35 686.50 690.89 686.62 684.59 689.05	685.62 686.56 686.89 687.14 687.25 690.99 687.14 687.25 691.28 687.86 687.44 687.44 687.44	686.22 686.67 686.94 687.17 687.30 691.28 687.45 687.25 692.84 687.26 691.84 687.72 687.99 691.50	0.00 698.00 698.95 698.95 698.95 698.95 692.00 698.95 692.00 689.50 689.50 689.50 689.50	698.00 698.95 698.95 696.20 689.50 698.95 688.43 692.00 694.85 689.00 688.92 689.49 692.95	Ex. Ex. Ex.
Project File:	: Moorir	ngs.stm							1	1		1	1		Number	r of lines: 1	4	1	Run Da	te: 6/24/20)15

Storm Sewer Tabulation

tation	Len	Drng	Area	Rnoff coeff	Area x	C	Тс		Rain (I)	Total flow	Cap full	Vel	Pipe	!	Invert El	ev	HGL Ele	v	Grnd / Ri	m Elev	Line ID
ine To Lin		Incr	Tota		Incr	Total	Inlet	Syst		now			Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
Er 2 1 3 2 4 3 5 4 5 4 6 0 8 11 1 12 5 13 5 14 5	141.0 72.00 116.0 63.00 26.00 65.00 40.00 189.00 98.00 73.00 42.00 38.00	00 0.00 00 0.00 0 0.00 0 0.19 0 0.51 0 0.00 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.25 0 0.00 0 0.25 0 0.00 0 0.00 0 0.00 0 0.00	3.69 2.93 1.08 0.97 0.76 1.85 0.11 0.25 0.11 1.30 0.78 0.00	0.00 0.00 0.00 0.75 0.86 0.74 0.00 0.91 0.84 0.78 0.69 0.00 0.00	0.00 0.00 0.00 0.14 1.37 0.00 0.23 0.09 1.01 0.54 0.00 0.00	3.82 2.81 2.14 0.77 0.68 0.67 1.37 0.09 0.23 0.09 1.01 0.54 0.00 0.00	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	15.1 14.5 14.2 13.4 10.5 11.2 10.0 12.4 10.0 10.0 10.0 10.0	7.8 8.0 8.1 8.2 9.0 8.8 9.1 8.5 9.1 9.1 9.1 9.1 0.0 0.0	40.08 32.54 27.37 16.49 16.24 5.86 12.51 0.78 2.08 0.84 9.26 4.92 4.65 5.47	60.85 43.05 32.98 32.17 20.18 3.86 7.81 8.61 7.55 0.00 5.46	3.19 3.38 3.87 2.33 3.31 7.46 7.08 0.64 2.82 0.69 11.80 6.26 5.92 6.97	48 42 36 30 12 18 15 12 12 12 12 12 12	0.15 0.16 0.21 0.20 0.21 1.00 2.05 1.00 1.24 4.99 3.83 -1.11 2.00	684.04 684.28 684.50 684.65 684.88 690.20 684.65 684.88 690.46 685.28 687.25 685.01 685.01 685.01	684.28 684.50 684.65 684.88 685.01 690.46 685.98 685.28 692.35 686.50 690.89 686.62 684.59 689.05	688.25 688.51 688.82 689.15 689.28 691.20 689.15 689.28 692.67 689.29 688.51 689.54 689.54 689.54 689.54	688.35 688.64 688.92 689.21 689.36 691.80 689.94 689.29 693.18 689.30 692.72 690.22 690.09 693.60	0.00 698.00 698.95 696.20 698.95 696.20 698.95 692.00 698.00 689.50 689.50 689.50 689.50	698.00 698.95 698.95 696.20 689.50 698.95 688.43 692.00 694.85 689.00 698.00 688.92 689.49 692.95	Ex. Ex. Ex.
roject F	ile: Moor	ings.stn	۱ ۱												Numbe	r of lines: 1	4		Run Da	te: 6/24/20	15

Storm Sewer Tabulation

Appendix I

Tributary Area Exhibit

Appendix II

100-Yr HGL Profile

Hydraflow Storm Sewers Extension for Autodesk® AutoCAD® Civil 3D® Plan

Storm Sewer Profile

Storm Sewer Profile

Storm Sewer Profile

Appendix III

MWRD Permit No. 787-87

SEWERAGE SYSTEM PERMIT NOV 12 All 9 47

OFFICE COPY

MSDGC Permit Nu IEPA Log No.

DISYSTEMS SECTION

METROPOLITAN SANITARY DISTRICT OF GREATER CHICAGO 100 EAST ERIE, CHICAGO, ILLINOIS 60611 - 751-5600

INSTRUCTIONS FOR FILLING FORMS: Submit typed forms of permit and schedules in quadruplicate; complete all information or indicate non-applicability; do not leave any blank spaces; use "X" for checking applicable information. Submit four copies of location map, plans and all applicable schedules. Submit two copies of specifications, where applicable. Address all correspondence to Local Sewer Systems Section; for any inquiries or assistance, telephone 751-5789.

NAME	AND	LOCA	FION:

Name of project (as shown on plans):	<u>The</u>	<u>Moorings</u>	of	Arlington	Heights,	Illinois	
Location of Project (street address or							
with respect to two major streets):	801	Central	Road	1			

Municipality (Township, if unincorporated) <u>Arlington Heights</u>, <u>Illinois</u> Section <u>10</u>, Township <u>41</u>, N, Range <u>11</u> E. Is project in MSDGC combined sewer area Yes [] No {X}

(OFFICE USE ONLY: X 1010181413), Y 1010181816, Code (01012), Receiving STP and/or Lift Station North Side Sewage Treatment Works, Skokie

DOCUMENTS BEING SUBMITTED: If project involves any of the items listed below, submit the corresponding schedule.

<u> </u>	Basic Information (Required in all cases)	Schedule	A
<u>x</u>	Sewer Connection(s)	Schedule	B
<u> </u>	Sewer Extension(s)	Schedule	C
<u>x</u>	Detention Facilities	Schedule	D
	Lift Station and/or Force Main	Schedule	E
	Characteristics of Waste Discharges	Schedule	F
	Treatment or Pre-treatment Facilities	Schedule	G
	Certification Relative to Compliance with Art. 4-1, 6-2d, and 6-3b	Schedule	H
	Affidavit Relative to Compliance with Art. 4-1, 6-2d, and 6-3b	Schedule	J
<u>×</u>	Affidavit of Disclosure of Property Interest	Schedule	κ
	Notice of Requirements for Storm Water Detention	Schedule	L
	Affidavit Relative to Compliance with Art. 6-4	Schedule i	M

OTHER DOCUMENTS: Indicate title, number of pages and originator:

Plan Sheet	<u> - C-1_th</u>	rough C-13_f	entitl	ed The	Mooring	gs_of	Arlington	Hts.,	<u></u>	
prepared by	y Austin	Engineering	g Co.	Inc.,	Peoria,	Il.				

1

1. Adequacy of Design. The schedules, plans, specifications and all other data and documents submitted for this permit are made a part hereof. The responsibility for the adequacy of the design shall rest solely with the Design Engineer and the issuing of this permit shall not relieve him of that responsibility. The issuance of this permit shall not be construed as approval of the concept or construction details of the proposed facilities and shall not absolve the Permittee, Co-Permittee or Design Engineer of their respective responsibilities.

CONDITIONS OF THE PERMIT

87-787

- Joint Construction and Operation Parmits. Unless otherwise stated by the Special Conditions, the issuance of this permit shall be a joint construction and operation permit provided all General, Standard and Special Conditions are complied with.
- 3. Allowable Discharges. Discharges into the sanitary sewer system constructed under this permit shall consist of sanitary sewage only. Unless otherwise stated by the Special Conditions, there shall be no discharge of industrial wastes under this permit. Storm waters shall not be permitted to enter the sanitary sewer system. Without limiting the general prohibition of the previous sentence, roof and footing drains shall not be connected to the sanitary sewer system.
- 4. Construction inspection. All sewer construction shall be inspected and approved by a Registered Professional Engineer acting on behalf of the Permittee or the owner of the project, or by a duly authorized and competent representative of the Professional Engineer. No sewer trenches shall be backfilled except as authorized by the Inspection Engineer after having inspected and approved the sewer installation.
- 5. Maintenance. The sewer connections, lines, systems or facilities constructed hereunder or serving the facilities constructed hereunder shall be properly maintained and operated at all times in accordance with all applicable requirements. It is understood that the responsibility for maintenance shall run as a joint and several obligation against the property served, the owner and/or the operator of the facilities, and said responsibility shall not be discharged nor in any way affected by change of ownership of said property.

MSDGC STANDARD CONDITIONS

- 6. Indemnification. The Permittee shall be solely responsible for and shall defend, indemnify and save harmless the Metropolitan Sanitary District of Greater Chicago (hereinafter MSDGC) from and against any and all claims, costs, damages, or expenses the MSDGC may suffer, incur, sustain or become liable for on account of any injury to, or death of, any person or persons, or any damage to, or destruction of, any real or personal property that may be caused by the construction, use, state of repair; operation and maintenance of the proposed facilities, arising out of or in consequence of the issuance of this permit. Without limiting the generality of the preceding sentence, the provisions of this paragraph shall extend to indemnify and save harmless the MSDGC from any claims or damages arising out of or in connection with the termination or revocation of this permit.
- 7. Construction by MSDGC. Permittee understands and acknowledges that the MSDGC has the right and power to construct and extend sewer service facilities and render such services within the area to be served by the project for which this permit is issued, and that by the MSDGC constructing and extending such sewer service facilities and rendering such services, the facilities constructed by the Permittee under this permit may decrease in value, become useless or of no value whatsoever, the Permittee may also sustain a loss of business, income and profits.

Therefore, by accepting this permit and acting thereon, the Permittee, for itself, its successors and assigns, does remise, release and forever discharge the MSDGC of any and all claims whatsoever which Permittee may now have or hereafter acquire and which Permittee's successors and assigns hereafter can, shall, or may have against the MSDGC for all losses and damages, either direct or indirect, claimed to have been incurred by reason of the construction or extension at any time hereafter by the MSDGC of sewer service facilities in the service area contemplated by this permit, the rendering of such services, which MSDGC facilities and services decrease the value of the facilities constructed by the Permittee under this permit, make same useless or of no value whatsoever, including but not limited to, any and all damages arising under Illinois Revised Statutes, Chapter 42, Section 339; the taking of private property for public use without due compensation; the interference with the contracts of Permittee; the interference with Permittee's use and enjoyment of its land; and the decrease in value of Permittee's land.

- 8. Third Parties. This permit does not grant the right or authority to the Permittee: (a) to construct or encroach upon any lands of the MSDGC or of any other parties. (b) to construct outside of the territorial boundaries of the MSDGC, (c) to construct or encroach upon the territorial boundaries of any units of local government within the MSDGC, (d) to connect to or discharge into or be served by (directly or indirectly) any sewer or sewer system owned or operated by third parties.
- Costs. It is expressly stipulated and clearly understood that the sewerage system or facilities for which the permit is issued shall be constructed, operated and maintained at no cost to the MSDGC.

Schedules To Be Submitted With MSDGC And IEPA Joint Permit Applications

OFFICE COPY

87-787

MSDGC Permit No. IEPA Log No.

SCHEDULE A - BASIC INFORMATION

1. PROJECT INFORMATION:

Name of project (as shown on plans) The Moorings of Arlington Heights, Illinois Location of project (street address or with respect to two major streets) 801 Central Road Municipality (Township, if unincorporated) Arlington Heights, Illinois

ASDE

2. APPROXIMATE TIME SCHEDULE:

Sewerage Facilities Construction Schedule: Start of Construction $\underline{-9/87}$; Date of Completion $\underline{12/88}$ Occupancy Schedule: Date Occupancy Begins $\underline{12/88}$; 100% Occupancy to be reached by $\underline{12/90}$

3. APPURTENANCES:

Project includes the following: (check applicable items by "X"): Manholes [X]; Catch basins or inlets [X]; Catch basin restrictors []; Drop Manholes []; Stream Crossing []; Siphon []; Direct Connections to MSDGC Facilities [].

4. RECEIVING SANITARY SEWER SYSTEM:

System to which project will connect is existing [X]; proposed []; under construction []. If proposed or under
construction by applicant, indicate MSDGC Permit No. <u>N/A</u> ; (IEPA Permit No. <u>N/A</u>). Identify
owners of all sewer systems from project to MSDGC interceptorKimball Hill Inc. Arlington Hydr
If project discharges directly or indirectly to a local combined sewer, the receiving combined sewer does [], does
not [] have an overflow. If overflow exists, discharge is made to by means of
(FOR OFFICE USE: Receiving MSDGC Treatment Plant and/or Lift Station Olfing e Tr
Point of Discharge of Sanitary Sewers; X L L L L J , Y L L L L J , Code LOLOLA
SB <u>[]]]-1014</u>)

5. EXISTING LIFT STATION: None

Receiving system includes an existing local Lift Station Yes [], No []; Project is [], is not [] in design service area of lift station. Location of existing lift station ______; Rated capacity of lift station ______ gpm; MSDGC or other permit number under which lift station was constructed ______; Existing lift station does [], does not [] have stand-by power; does [], does not [] have an overflow; if there is an overflow, overflow discharges to storm sewer [], to waterway [], name of waterway ______.

6. FLOOD PLAIN

Project area is partially (or totally) in flood plain Yes [], No [X]; if yes, complete the following: Percent of area in flood plain ______%. Flood crest elevation is ______; Name of USGS Quadrangle __<u>Arlingfort by 5_____</u>. Volume of flood storage available prior to development (Volume between flood crest elevation and existing ground) _____Cu. Yd. Volume of fill made in flood plain _____Cu. Yd. Compensatory storage provided _____Cu. Yd. Identify any manholes in flood plain _____

7. AREA AND DRAINAGE OF PROJECT:

Area of this project 23-342 acre(s). Total contiguous property ownership, including this project, 42.1 acre(s). Existing impervious area within project, if any (paved, roofed, etc.) 0-92.8 acre(s). New impervious area created within project (paved, roofed, etc.) 11.0 acre(s). Manner of drainage: Storm sewer provided [X]; Catch basins or inlets [X]; Surface runoff [X]; Other [X], describe: <u>lakes and detention basins</u>

8. DETENTION:

Detention is provided under this permit: Yes [X], No []. Detention is required by MSDGC [], local government [X], other [], describe 2 lakes and 2 detention areas

(MSDGC USE ONLY: Point of discharge of storm waters; X L L L L L ; Y L L L L L : DB 151(10)

1				in the state of the second	ارد است واست المترسا
f.	N.Basin 8"	S.E. Barin	C ¹¹		
	Niceali Basin G"	weit Lake	10 "		
	East Lake 8"	S. Wash Red.	<u>sii 3</u>		

Schedule K	OFFICE %	MSD	Permit Application No	87-787
	AFFIDAVIT OF DISCLOST	JRE OF PROPE	RTY INTEREST	
STATE OF ILLINO) SS			
COUNTY OF COOK	,			
Name of Project:	The Moorings of Arlin			
Location of Project	:801 Central Road, Arl	ington Heig	hts, Illinois	
	hael S. McCarthy			after first being duly
	(Name of Affiant - T states that he is (the compared by , hetchick	and she was kitled	XXXX	molikits Rkhark Refer, (an Officer
Vice-Presiden		of Parkside	rust Holder' <u>Development</u> Corpo	Gengenation), (a
offic RXRXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	ial capacity) X		of Corporation)	record title holder of
NAMAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAA	(Name of Partnership	a)	permit application (co	

the property which is the subject of a certain sewerage system permit appl indicated and designated by the number shown above) filed with the Metropolitan Sanitary District of Greater Chicago, which property is shown on the attached plat of survey which together with the legal description of the property are attached hereto as Exhibit "A" and specifically incorporated by reference herein.

B. Affiant further states that said property described in Exhibit "A" has a total area of _ acres and constitutes the total contiguous ownership of the owner, and that the portion of the property currently proposed for development consists of 43 acres, and the property is intended for u described hereinafter: Continuing Care Retirement Community for older adults and acres, and the property is intended for use as related nursing home center.

*C. Affiant further states that, because of its size and intended use, the property described in Exhibit "A" comes under the requirements of the MSDGC with respect to the establishment of on-site storm water detention, and that such detention facilities will be provided as part of the project in accordance with the design and calculations furnished to satisfy said requirements with respect to the property described in Exhibit "A", and further states that:

1. The owner of the property or any beneficiary of a land trust, if any, which is the record title holder of the property has no present interest, nor had any interest at any time during the previous two years, in any lands contiguous to said property. (If such interest is or was held, detention must be provided for the total.)

2. No owner of any lands contiguous to the property and no beneficiary of a land trust, if any, which is the record title holder of any land contiguous to the property has any interest in the property. (If such interest is held, detention must be provided for the total.)

offiant understands and agrees that any permit issued by MSDGC in reliance upon this affidavit shall be deemed to contain a special condition that if, within two years after the issuance of the permit, the owner or any beneficiary of a land trust, if any, which is the record title holder of the property, acquires any interest in lands contiguous to the property, the owner shall provide for storm water detention for such lands in which an interest is acquired, regardless of the size of such lands.

.4

MSD Permit Application NST = 787

AFFICE ASPY

This affidavit is given to induce the Metropolitan Sanitary District of Greater Chicago to issue its sewerage system permit with respect to the aforedescribed property and to exempt said property from any present requirements to provide and maintain storm water detention facilities thereon.

E. Affiant further states, that for the purpose of this affidavit, the following terms have the meanings indicated:

Owner: means record title holder or a beneficiary of a land trust which is the record title holder, and includes singular and plural; if the owner is other than an individual, the term includes beneficiaries, agents, shareholders, officers and directors.

Ownership: means holding of record title or any beneficial interest.

Interest: means property interest or contractual interest, legal or equitable, directly or indirectly, in part or in full, and includes option to buy. In the case of shareholder interest, the shareholder shall be deemed to have interest if he owns or controls 5% or more of the shares.

<u>Contiguous:</u> means adjacent to and touching at one point or more; if the lands are separated by an easement or a dedicated right-of-way, it shall be considered contiguous.

F. Affiant understands and agrees that in the event that any of the aforementioned information is incorrect, erroneous, false or misleading, the District shall have the option to immediately terminate any permit issued based on the above information.

Dated this 30th day of My October Muhaels Milit

SUBSCRIBED and SWORN to before me th

is	304-	day of _	Octoper	1987	<u> </u>
	Pame	la 1		1	
-	(Notarý P	ublic)		

My Commission Expires Feb. 24, 1990

LSS-75-04/Rev. 76-03-12 Schedule K

thence Westerly along a line deflecting 45 degrees to the left from an extension of the last described thence Westerly along a line deflecting 45 degrees to the NW^{*}, so the NW^{*}, a distance of 140.0°; line, 130.0°; thence Northerly parallel to said W. line, 190.0°; thence Northerly parallel to said W. line, thence Easterly perpendicular to said W. line, 190.0°; thence Northerly parallel to said S. line, 35.0°; 135.84° to a point on a line 749.0° S. of and parallel to the S. line of Central Avenue; thence Easterly parallel to said S. line, 170.36°; thence Northerly perpendicular to said S. line Easterly parallel to said S. line, 200.0°; thence Northerly perpendicular to said S. line thence Easterly parallel to said S. line, 200.0°; thence Northerly perpendicular to said S. line ine, 95.0°; thence Westerly parallel with said S. line 70.0°; thence Northerly perpendicular to 70.0°; thence Westerly parallel with said S. line, 180.0°; thence Northerly perpendicular to said S. line, 135.0°; thence Northerly perpendicular to said S. line, 95.0°; thence Westerly along a line deflecting 45 degrees to the left from an ine, 95.0°; thence Westerly along a line deflecting 45 degrees to the left from a extension of the last described line, 175.0°; thence Southerly perpendicular to the left from a extension of the last described line, 175.0°; thence Southerly perpendicular to the left from a extension of the last described line, 175.0°; thence Southerly perpendicular to the left from a extension of the last described line, 175.0°; thence Southerly perpendicular to the left from a extension of the last described line, 175.0°; thence Southerly perpendicular to the left from a extension of the last described line, 175.0°; thence Southerly perpendicular to the left from a extension of the last described line, 175.0°; thence southerly perpendicular to the left from a extension of the last described line, 175.0°; thence southerly perpendicular to the left to the left to a set to the last described line to the last described line aforementioned Central Avenue: thence Wasterly along said S. line of Central Avenue, 902.99' to a point on the E. line of said NE* of the NW* of Sec. 10, said point being 50.0' S. of the NW*; thereof; thence Southerly along said E. line, 1368.57' to the SE corner of said NE* of the NW*; thence Westerly along the S. line thereof, 991.0' to the point of beginning, containing 23.5198 acres, That part of the NEV of the NWV of Sec. 10, T. 41 N., R. 11 E. of the 3rd P.M., described as follows: Commencing at the SW corner of said NEV of the NWV; thence Easterly along the S. line follows: Commencing at the SW corner of said NEV of the NWV; thence Easterly perpendicular to said the reof, 330.53' for a point of beginning; thence Northerly along a line, 330.55' E. of and parallel to the the W. line, 270.0'; thence Southeasterly along a line deflecting 45 degrees to the right from an vith the V. line, 270.0'; thence Southeasterly along a line deflecting 45 degrees to the right from an vith line, 270.0'; thence Easterly along a line, 210.0'; thence Easterly perpendicular to said W. line, 270.0'; thence Easterly perpendicular to said W. line, 210.0'; thence Northerly parallel with said extension of the last described line, 210.0'; thence Southerly perpendicular to said W. line, 25.0'; thence We sterry perpendicular to said W. line, 210.0'; thence Northerly parallel to the line, 25.0'; thence We sterry perpendicular to said W. line, 210.0'; thence Northerly parallel to the line, 97.48'; thence Westerly perpendicular to said W. line, 210.0'; thence Northerly parallel to the along a line deflecting 45 degrees to the right from an extension of the last described line, 100'; thence Northerly parallel to the line, 97.48'; thence Westerly perpendicular to said W. line, 210.0'; thence Northerly parallel to the along a line deflecting 45 degrees to the right from an extension of the last described line, 100'; thence Westerly perpendicular to said W. line, 210.0'; thence Northwesterly the line, 210.0'; thence Westerly perpendicular to said W. line, 210.0'; thence Westerly perpendicular to said W. line, 210.0'; thence Northwesterly to the along a line deflecting 45 degrees to the right from an extension of the last described line, 180.0'; thence Westerly perpendicular to said W. line, 210.0'; thence Westerly perpendicular to said W. line, 210.0'; thence Westerly perpendicular to said W. line, 210.0'; thence Westerly pe the aforesaid S. line of Central Avenue, 120.0'; thence Westerly parallel with said S. line of 55.0'; thence Northerly perpendicular to said S. line, 434.0' to a point on the S. line of Cook County, Illinois.

Westerly along a line deflecting 45 degrees to the left from an extension of the last described line. along the last described line, a distance of 455.0' to a point on a line 749.0' S. of and parallel with the S. line of Central Avenue; thence Easterly along said parallel line, 287.50'; thence Southerly parallel with said W. line of the NE⁴ of the NW⁴ a distance of 135.84'; thence westerly perpendicular to said W. line, 190.0'; thence Southerly parallel with said W. line, 140.0'; thence Easterly perpendicular to said W. line, 130.0'; thence Southerly parallel with said W. line, 140.0'; thence Easterly perpendicular to said W. line, 130.0'; thence Southeasterly along a line deflecting 45 degrees to the right from an extension of the last described line, 180.0'; thence Easterly along a line deflecting 45 degrees to the left from an extension of the last described line, 210.0'; of 97.48°; thence Westerly perpendicular to said W. line, 60.0°; thence Northerly parallel with said W. line 25.0°; thence Worthwesterly along Parcel Two: That part of the NE¥ of the NW≵ of Sec. 10, T. 41 N., R. 11 E. of the 3rd P.M., described as follows: Commencing at the SW corner of said NE≵ of the NW≵; thence Easterly along the S. line thereof, 330.53'; thence Northerly along a line 330.50' E. of and parallel with the W. line of said NE≵ of the NW≵, a distance of 192.66' for a point of beginning; thence continuing Northerly line deflecting 45 degrees to the right from an extension of the last described line, 35.0' thence thence Southerly parallel with the aforesaid W. line of the NE* of the NW* of Sec. 10, a distance 270.0' to the point of beginning, containing 2.8877 acres, in Cook County, Illinois.

. وايي أن ما يستحص الأمالي التي ما ما يك من الحط

Carles Star

1
Parcel Three:

parallel with the N. line of said NEt of the NWt; thence Easterly along said S. line of Central Avenue, 419.50°; thence Southerly perpendicular to said S. line 75.0°; thence Westerly parallel with said S. line, 104.0°; thence Vesterly parallel vith said S. line, 20.0°; thence Vesterly parallel vith said S. line, 30.0°; thence Southerly perpendicular to said S. line, 20.0°; thence Vesterly parallel with said S. line, 30.0°; thence Southerly perpendicular to said S. line, 20.0°; thence Vesterly parallel with said S. line, 30.0°; thence Southerly perpendicular to said S. line, 20.0°; thence Vesterly parallel with said S. line, 56.0°; thence Southerly perpendicular to said S. line, 20.0°; thence Vesterly parallel with the aforesaid S. line, 12.14° to a point on a line 749.0° S. of and parallel with the aforesaid S. line of Central Avenue; thence Easterly along said parallel line, 112.14° to a point on a line 330.50° E. of and parallel with the W. line of Said NEt of the NWt of Sec. 10; thence Southerly along said parallel line, 112.14° to a point on a line 330.50° E. of and parallel with the W. line of Said NEt of the NWt of Sec. 10; thence Southerly along said parallel line, 112.14° to a point on a line 330.50° E. of and parallel with the W. line of Said Parallel line, 112.14° to a point on a line 330.50° E. of and parallel with the W. line of said parallel line, 112.14° to a point on a line 330.50° E. of and parallel with the W. line of said parallel line, 112.14° to a point on a line 330.50° E. of and parallel with the W. line of said parallel line, 112.14° to a point on a line 330.50° E. of and parallel with the W. line of said NET o That part of the NE% of the NW% of Sec. 10, T. 41 N., R. 11 E. of the 3rd P.M., described as follows: Beginning at the SW corner of said NE% of the NW% of Sec. 10; thence Northerly along the W. line thereof, 1406.13' to the Southerly line of Central Avenue, being a line 50.0' S. of and 647.66 to a point on the S. line of said NEX of the NWX, 330.53' E. of the point of beginning: thence Westerly along said S. line 330.53' to the point of beginning, containing 10.8645 acres, in Cook County, Illinois. follows:

Canal Cana

è

82.58 SAZ

That part of the NE% of the NW% of Sec. 10, T. 41 N., R. 11 E. of the 3rd P.M., described That part of the NE% of the NW% of Sec. 10, T. 41 N., R. 11 E. of the SW, thence Easterly along as follows: Commencing at the SW corner of said NE% of the NW%; thence Easterly along the S. line thereof, 330.53'; thence Northerly along a line 330.50' E. of and parallel with the W. line of said NE% of the NW%, a distance of 647.66' for a point of beginning; thence the W. line of said NE% of the NW%, a distance of 647.66' for a point of beginning; thence we the W. line of said NE% of the NW%, a distance of 112.14'; thence Northerly desterly parallel to the S. line, 220.0'; thence Easterly parallel to said S. line, 56.0'; berpendicular to said S. line 2000'; thence Easterly parallel with said thence Northerly perpendicular to said S. line 75.0'; thence Easterly parallel with said 30.0'; thence Northerly perpendicular to said S. line 120.0'; thence Easterly parallel with said thence Northerly perpendicular to said S. line 120.0'; thence Easterly parallel with said 30.0'; thence Northerly perpendicular to said S. line 120.0'; thence Easterly parallel with said thence Northerly perpendicular to said S. line 20.0'; thence Southerly along a line deflecting tith said S. line 175.0'; thence Southerly perpendicular to said S. line 120.0'; thence Easterly parallel with said S. line, 180.0'; thence Southerly perpendicular to said S. line, 180.0'; thence Southerly perpendicular to said S. line, 200.0'; thence Southerly perpendicular to said S. line, 200.0'; thence Southerly perpendicular to said S. line, 30.0'; thence Westerly persendicular to said S. line, 200.0'; thence Southerly perpendicular to said S. line, 35.0'; thence Westerly line, 180.0'; thence Southerly perpendicular to said S. line, 35.0'; thence Westerly parallel with said S. line, 200.0'; thence Southerly perpendicular to said S. line 200.0'; thence Westerly perpendicular to said S. line 200.0'; thence Southerly perpendicular to said S. line 200.0'; thence Westerly perpend parallel with said S. line, 457.86° to the point of beginning, containing 4.8239 acres, in Cook County, Illinois.

そうざい たんである あまます

e''

1

ENGINEERING CERTIFICATIONS

OFFICE COPY

-787

MSDGC Permit No.

IEPA Log No.

CERTIFICATE BY DESIGN ENGINEER: I hereby certify that the project described herein has been designed in accordance with the requirements set forth in this application and all applicable ordinances, rules, regulations, Local, State and Faderal Laws, and design criteria of the issuing authority; that the storm drainage and sanitary sewer system designed for this project are proper and adequate; that, where the design involves one or more connections to an existing local sewer system, the capacity of said system has been examined and the system is found to be adequate to transport the wastewater that will be added through the proposed sewer without violating any provisions of the Illinois Environmental Protection Act or the rules and regulations thereunder.

Engineering Firm: Austin Engineering Co., Inc. Telephone: (309) 691-0224 Engineering Firm: Austin Engineering Co., Inc. Telephone: (309) 691-0224 Adders: Signature City: Peoria Zip: 61615 Adders: Date: September 21, 1987 Intervention JameB & Franklin, P.E. Vice President CERTIFICATE BY MUNICIPAL OR SYSTEM ENGINEER: The application and the drawings, together with other data abeing submitted with this application, have been examined by me and are found to be in compliance with all applicable requirements. The manner of drainage is subfactory and proper. The existing local sever system to which the project discharges has been examined and the system is found to be adequate to transport the watewater that will be added through the proposed sever without violating any provisions of the Illinois Environmental Protection Act or the rules and regulations thereunder. Comments, if any:	and regulations the centre of		1.4 · · · · · · · · · · · · · · · · · · ·	Lington Heights &
Engineering Firm: Austin Engineering Co., Inc. Telephone: [309] 091-0224 Address: N. University City: Peoria Zip: 61615 Address: Signature (Name and Title) Jameb R. Franklin, P.E. Vice President CERTIMENT: Vice President Vice President Vice President CERTIMENT: The maner of drainage is satisfactory and proper. The existing local sever system to which the project dischargs has been examined and the system is found to be adequate to transport the watewater that will be added through the proposed sever without violating any provisions of the Illinois Environmental Protection Act or the rules and regulations thereunder. Comments, if any:	Comments, if any: Bypass storm sewer &	swale designed as	<u>a dictated by Ar.</u>	Mt. Prospect
Address: N. University City: Peoria Zip: 0.013 Address: Address: September 21, 1987 Date: September 21, 1987 Ontail Jameb R. Franklin, P.E. Vice President Vice President CERTIFICATE BY MUNICIPAL OR SYSTEM ENGINEER: The application and the drawings, together with other data being submitted with this application, have been examined by me and are found to be in compliance with all applicable requirements. The menner of drainage is satisfactory and proper. The existing local sever system to which the project discharges has been examined and the system is found to be adequate to transport the wastewater that will be added through the proposed sever without violating any provisions of the Illinois Environmental Protection Act or the rules and regulations threunder. Comments, if any:	Austin Engineering (30., Inc.	. Telephone: (309)	091-0224
Status Amm	-	City: Peor	ria	Zip:61615
Owner of Local Sewer System Village of Arlington Heights, IL. Acting William C. Blecke Telephone: 312-577-5625 Municipal Engineer: William C. Blecke Telephone: 312-577-5625 Address: 33 S. Arlington Heights Rd. City: Arlington Heights Zip: 60005 Address: 33 S. Arlington Heights Rd. City: Arlington Heights Zip: 60005 (P.E.) Signature Signature Blecke Date: 11-10-87 (Name and Title) (Name and Title) Date: 11-10-87 Signature CERTIFICATE BY INSPECTION ENGINEER: I hereby certify that construction of the project will be in substantial compliance with the data and the plans submitted with this application: that approval will be obtained from the issuing authority prior to making any changes that would affect capacity, maintenance, design requirements, service area or the permit requirements; that a set of "As-Constructed" drawings, certified to be correct, over the signatures of both the Contractor and the Undersigned Engineer will be furnished to the MSDGC within sixty (60) days after testing and approval by the District of the completed work.	CERTIMATE BY MUNICIPAL OR SYSTEM being submitted with this application, have beer requirements. The manner of drainage is satis discharges has been examined and the system is for the proposed sewer without violating any provision	nklin, P.E. nklin, P.E. nt ENGINEER: The applica en examined by me and ar factory and proper. The c	tion and the drawings, re found to be in comp existing local sewer syst	together with other data liance with all applicable tern to which the project hat will be added through
Acting Municipal Engineer: William C. Blecke Telephone: Signature Address: 33 S. Arlington Heights Rd. City: Arlington Heights Zip: 60005 Address: 33 S. Arlington Heights Rd. City: Arlington Heights Zip: 60005 P.E. Signature Signature Signature Blecke Date: 11-10-87 (Name and Title) CERTIFICATE BY INSPECTION ENGINEER: I hereby certify that construction of the project will be in substantial compliance with the data and the plans submitted with this application; that approval will be obtained from the issuing authority prior to making any changes that would affect capacity, maintenance, design requirements, service area or the permit requirements; that a set of "As-Constructed" drawings, certified to be correct, over the signatures of both the Contractor and the Undersigned Engineer will be furnished to the MSDGC within sixty (60) days after testing and approval by the District of the completed work.	Comments, if any:	Lulington Woights	TT	
Acting Municipal Engineer: William C. Blecke Telephone: Signature Address: 33 S. Arlington Heights Rd. City: Arlington Heights Zip: 60005 Address: 33 S. Arlington Heights Rd. City: Arlington Heights Zip: 60005 P.E. Signature Signature Signature Blecke Date: 11-10-87 (Name and Title) CERTIFICATE BY INSPECTION ENGINEER: I hereby certify that construction of the project will be in substantial compliance with the data and the plans submitted with this application; that approval will be obtained from the issuing authority prior to making any changes that would affect capacity, maintenance, design requirements, service area or the permit requirements; that a set of "As-Constructed" drawings, certified to be correct, over the signatures of both the Contractor and the Undersigned Engineer will be furnished to the MSDGC within sixty (60) days after testing and approval by the District of the completed work.	Owner of Local Sewer System Village of	Arlington heights,	212-5	
Address: 33 S. Arlington Heights Rd. City: Arlington Heights Zip: 00003 (P.E. Signature) Signature) Signature) Signature) Signature) (Name and Title) (Name and Title) Date: 11-10-87 (Name and Title) Signature) Signature) CERTIFICATE BY INSPECTION ENGINEER: I hereby certify that construction of the project will be in substantial compliance with the data and the plans submitted with this application; that approval will be obtained from the issuing authority prior to making any changes that would affect capacity, maintenance, design requirements, service area or the permit requirements; that a set of "As-Constructed" drawings, certified to be correct, over the signatures of both the Contractor and the Undersigned Engineer will be furnished to the MSDGC within sixty (60) days after testing and approval by the District of the completed work.	Acting Municipal Engineer:William C. Bleck	.e	Telephone:7	(000E
(P.E. Signature D'Unic Black Date: 11-10-87 (Name and Title) CERTIFICATE BY INSPECTION ENGINEER: I hereby certify that construction of the project will be in substantial compliance with the data and the plans submitted with this application; that approval will be obtained from the issuing authority prior to making any changes that would affect capacity, maintenance, design requirements, service area or the permit requirements; that a set of "As-Constructed" drawings, certified to be correct, over the signatures of both the Contractor and the Undersigned Engineer will be furnished to the MSDGC within sixty (60) days after testing and approval by the District of the completed work.	Address: 33 5. Arlington Heights Rd	City: Arlin	igton Heights	Zip: _60003
compliance with the data and the plans submitted with this application, maintenance, design requirements, service area or the authority prior to making any changes that would affect capacity, maintenance, design requirements, service area or the permit requirements; that a set of "As-Constructed" drawings, certified to be correct, over the signatures of both the permit requirements; that a set of "As-Constructed" drawings, certified to be correct, over the signatures of both the Contractor and the Undersigned Engineer will be furnished to the MSDGC within sixty (60) days after testing and approval by the District of the completed work.	(P.E.) Signature Willia	- C. Bleele		
	compliance with the data and the plans submatched authority prior to making any changes that we permit requirements; that a set of "As-Consta Contractor and the Undersigned Engineer will by the District of the completed work.	vould affect capacity, main ructed" drawings, certified be furnished to the MSDG	ntenance, design require d to be correct, over t iC within sixty (60) day	ements, service area or the the signatures of both the is after testing and approval

Engineering i min.			, IL Zip:60069
Knight	sbridge Parkway Suite	15 City: Lincolnshille	2ip:
ANANA			
4.		\square	1
341	$\bigcirc \land \land \land$		10/28/87
	nature <u>Jelus</u> 2	W La Date: _ Date: _	
	(Name and Title)		
			,
M. N. T. S.			
		4	· .
			and a start of the second s A second secon
Million March	a an	an an di shi ngan ku ku shina an a	

OFFICE COPY

IEPA Log No.

SCHEDULE B - SEWER CONNECTIONS

BUILDING INFORMATION: Building sewer connections are [X], are not [] part of this permit; if part of this permit, complete the following:

- 1. TYPE OF CONSTRUCTION: Residential [X], Commercial [], Light Industrial [], Manufacturing [], Recreational [], Existing Septic System to be abandoned [], Other _______.
 - 2. RESIDENTIAL BUILDINGS: Single Family [], Multiple Family [X]. If single family: Total dwelling units ; Estimated total population______. If multiple family: Number of buildings_6_____; Number of dwelling units per building 251 Total ; Total number of sewer connections 11______; Estimated total population 542 + 50 employees (est.)
 - 3. NON-RESIDENTIAL BUILDINGS: Describe use of building______None______.
 Product manufactured or process used ________.
 Number of buildings to be served under this permit _______. Number of sewer connections under this permit ______.
 Estimated number of employees _______. Estimated number of occupants (transients)______. Estimated total flow _______. gpd. Population equivalent (If based on BOD, use IPCB basis)______.
 - 4. BUILDING USE: Use of building will involve the following: Food preparation Yes [X] No []; Food processing Yes [] No [X]; Auto Service Yes [] No [X]; Auto Wash Yes [] No [X]. If building involves any of these uses, indicate if sewer connections will receive domestic sewage only [], will receive other wastes (commercial, not industrial) [X]; if wastes other than domestic are discharged, indicate method of control being provided; Grease separator [X], Triple Basin [], Mud Basin [], other [] specify_________. Indicate whether control is inside [X], or outside building [22]. Industrial waste is [], is not [X] produced by the intended use of the building. (Unless permitted under the special conditions, discharge of industrial waste is prohibited). If industrial waste is produced, submit Schedule F, indicate method of disposal ______N/A_____.

This project includes a swimming pool: Yes [X], No []; if yes, submit piping drawings.

5. Complete summary of Sanitary Sewers on Schedule C.

(Future swimming pool)

* Apartments Su rent

SCHEDULE C - SEWER EXTENSIONS

NATURE OF PROJECT: Project consists of single sewer extension to serve the building(s) indicated above (normality according to serve a subdivision) []; Consists of a trunk sewer only (outlet sewer with no proposed connections) to serve future development []. Project is publicly financed Yes [], No [X].

AREA AND POPULATION: Submit a map of service area and complete the following:

- 1. Area serviceable by the sewers covered by this permit (including area to be served hereunder) 23.3 acres; population 542 + 50 employees
- 2. Potential service area of sewers covered by this permit, including planned or anticipated extensions 28.9 ____acres; population 596 +50 employees
- 3. Design flow: average (if based on other than 100 gpcpd) <u>61,350</u> gpcpd; Maximum design flow as percent of average <u>400%</u>. (Use MSDGC Manual of Procedures, Article 3 7).
- 4. Basis of design for area zoned or planned for non-residential use: Average design flow <u>N/A</u> gpd/acre. Maximum design flow as percent of average ______,

SUMMARY OF SANITARY SEWERS (INCLUDE ALL SEWERS IN COMBINED SEWER AREA): Include building service sewers (stubs or risers) if any.

Pipe size - inches	1.0"	8" 🖌	6"	#1 VCP ASTM C-700
Total length - feet	2078	210 ·	394 352	#2 ASTM C-425 & D-1784
Min. slope used - %	0.28	0.50	1.00	#3 D.I. ANSI A21.51
Max. slope used - %	0.28	6.00	100*	#4 ANSI ANSI A21.11
Pipe Material & Spec.	#1	#1 #3	#1	*Service riser
Joint Material & Spec.	#2	#2 #4	#2	
Total Manholes	9			
Total Cleanouts	0	0	5	

	416UW	OFFICE COPY	MSC GC P		<u>78</u> /
		SCHEDULE D · DETENT	10N*		PAPA-6 All 9:58
ł.	Project Information			ц _е з	00
	Name of Project (as show	The Moorings of Ar	lington Heights,	Illinois	· 07.5 1.
	Location 801	Central Road. Arlington He	ights, Illinois		
	Design criteria: MSDGC	[]; Local Government []; Other []		·
۱۱.		bie Release Rate - Undeveloped Site:	NORTH DETENT	LON BASIN 80	•
	1. Area of site			n nhu	, acros
	2. Average ground slop	pe	•••••	700	, føot/foot , feet
	Overland flow distant	nce		1.5	, minutes
		annelized flow (See Note a)			foot/foot
		istance (See Note a)			feet
	7 Channelized flow ti	me of concentration			, minutes
	 B. Total time of conce 	ntration (Line 4 + Line 7)		45	, minutes
	9. Reinfell intensity fo	or three-year storm		1.91	, inches/hr.
	t0. Bupoff coefficient ((Use c=0.15 as maximum, see Article 6-4)	b(1)	0.15	
	of the MSDGC Man	(lau)		7.20	,
	11. Aliowable release ra	ite, (line 1 x line 9 x line 10:O=ciA)		2.23	, cfs.
	and slopes and su	I defined channel determine time of con- ubmit necessary calculations and drawing	5.		
		is fire . Developed Citer			
111.	Determination of Reservo			3.1	, acres
111.	Determination of Reservo 12. Impervious drainage 13. Pervious drainage ar	e area		4.9	, acres , acres
111.	Determination of Reservo 12. Impervious drainage 13. Pervious drainage ar 14. Composite runoff c	e area		4.9 0.67	•
W.	Determination of Reservo 12. Impervious drainage 13. Pervious drainage ar 14. Composite runoff c	: area		4.9	ecres ecres ecre-feet
	Determination of Reservo 12. Impervious drainage 13. Pervious drainage ar 14. Composite runoff of 15. Required reservoir of Permissible Bypass Rate (e area		4.9 0.67	ecre-feet
	Determination of Reservo 12. Impervious drainage 13. Pervious drainage ar 14. Composite runoff of 15. Required reservoir of Permissible Bypass Rate (16. Total area upstream	e area		4.9 0.67 1.14 391	•
	Determination of Reservo 12. Impervious drainage 13. Pervious drainage ar 14. Composite runoff of 15. Required reservoir of Permissible Bypass Rate (16. Total area upstream 17. Future/present imp	e area		4.9 0.67 1.14 391	ecre-feet
	Determination of Reservo 12. Impervious drainage 13. Pervious drainage ar 14. Composite runoff of 15. Required reservoir of 15. Required reservoir of 16. Total area upstream 17. Future/present imp 18. Future/present perv 19. Composite runoff of	e area	m Area:) r MSDGC Manual of	4.9 0.67 1.14 391 - - 0.50	acres
	Determination of Reservo 12. Impervious drainage ar 13. Pervious drainage ar 14. Composite runoff of 15. Required reservoir of Permissible Bypass Rate (16. Total area upstream 17. Future/present impi 18. Future/present perv 19. Composite runoff of Procedures Article (e area	m Area:) r MSDGC Manual of	4.9 0.67 1.14 391 -	acres
	Determination of Reservo 12. Impervious drainage 13. Pervious drainage ar 14. Composite runoff or 15. Required reservoir of Permissible Bypass Rate of 16. Total area upstream 17. Future/present imput 18. Future/present perv 19. Composite runoff or Procedures Article of 20. Design storm freque (Design storm freque	e area	m Area:) r MSDGC Manual of	4.9 0.67 1.14 391 - - 0.50	acres acres acres acres acres
	Determination of Reservo 12. Impervious drainage 13. Pervious drainage ar 14. Composite runoff of 15. Required reservoir of Permissible Bypass Rate (16. Total area upstream 17. Future/present impi 18. Future/present perv 19. Composite runoff of Procedures Article (20. Design storm freque (Design storm freque requirement is estat	e area	m Area:) r MSDGC Manual of inance; if no local	4.9 0.67 1.14 391 - 0.50 5	acres acres acres acres acres
	Determination of Reservo 12. Impervious drainage 13. Pervious drainage ar 14. Composite runoff of 15. Required reservoir of Permissible Bypass Rate (16. Total area upstream 17. Future/present impl 18. Future/present perv 19. Composite runoff of Procedures Article (20. Design storm freque (Design storm freque requirement is estat 21. Time of concentrati	e area	m Area:) r MSDGC Manual of inance; if no local ry; upstream area to	4.9 0.67 1.14 391 - 0.50 5 92	acres acres acres acres acres year year
	Determination of Reservo 12. Impervious drainage 13. Pervious drainage ar 14. Composite runoff of 15. Required reservoir of Permissible Bypass Rate of 16. Total area upstream 17. Future/present imposed 18. Future/present perv 19. Composite runoff of Procedures Article (20. Design storm freque (Design storm freque requirement is estat 21. Time of concentration be considered as destated 13. Pervious drained 14. Composite runoff of 15. Requirement is estated 16. Total area upstream 17. Future/present pervious drained 18. Pervious drained 19. Composite runoff of the setated 19. Design storm freque 19. Composite runoff of the setated 19. Design storm freque 19. Composite area of the setated 19. Composite area of the se	e area	m Area:) r MSDGC Manual of inance; if no local ry; upstream area to	4.9 0.67 1.14 391 - 0.50 5 92 2.05	acres acres acres acres acres
	 Determination of Reservo 12. Impervious drainage 13. Pervious drainage an 14. Composite runoff of 15. Required reservoir of 15. Required reservoir of 16. Total area upstream 17. Future/present imput 18. Future/present perv 19. Composite runoff of Procedures Article (20. Design storm freque (Design storm freque requirement is estat 21. Time of concentration be considered as det 22. Design storm Intens 23. Permissible bypass a 	e area	m Area:) r MSDGC Manual of inance; if no local ry; upstream area to	4.9 0.67 1.14 391 - 0.50 5 92 2.06 *96	acres acres acres acres acres year year inches/hour cfs.
	Determination of Reservo 12. Impervious drainage 13. Pervious drainage ar 14. Composite runoff of 15. Required reservoir of Permissible Bypass Rate of 16. Total area upstream 17. Future/present impl 18. Future/present perv 19. Composite runoff of Procedures Article of 0. Design storm freque (Design storm freque (Design storm freque 11. Time of concentration the considered as design 22. Design storm Intens 23. Permissible bypass r #96 cfs= max.	e area	m Area:)) r MSDGC Manual of inance; if no local ry; upstream area to m sewer as per Mt	4.9 0.67 1.14 391 - 0.50 5 92 2.06 *96 . Prospec	acres acres acres acres acres year year inches/hour cfs.
	Determination of Reservo 12. Impervious drainage 13. Pervious drainage ar 14. Composite runoff of 15. Required reservoir of Permissible Bypass Rate of 16. Total area upstream 17. Future/present impl 18. Future/present perv 19. Composite runoff of Procedures Article of 0. Design storm freque (Design storm freque (Design storm freque considered as des 22. Design storm Intens 23. Permissible bypass r #96 cfs= max.	e area	m Area:)) r MSDGC Manual of inance; if no local ry; upstream area to m sewer as per Mt	4.9 0.67 1.14 391 - 0.50 5 92 2.06 *96 . Prospec	acres acres acres acres acres year year inches/hour cfs.
	Determination of Reservo 12. Impervious drainage 13. Pervious drainage ar 14. Composite runoff of 15. Required reservoir of Permissible Bypass Rate of 16. Total area upstream 17. Future/present impl 18. Future/present perv 19. Composite runoff of Procedures Article of 0. Design storm freque (Design storm freque (Design storm freque considered as des 22. Design storm Intens 23. Permissible bypass r #96 cfs= max.	e area	m Area:)) r MSDGC Manual of inance; if no local ry; upstream area to m sewer as per Mt	4.9 0.67 1.14 391 - 0.50 5 92 2.06 *96 . Prospec	acres acres acres acres acres year year inches/hour cfs.
	Determination of Reservo 12. Impervious drainage and 13. Pervious drainage and 14. Composite runolf of 15. Required reservoir of Permissible Bypass Rate of 16. Total area upstream 17. Future/present impu- 18. Future/present perv 19. Composite runolf of Procedures Article (20. Design storm freque (Design storm freque (Design storm freque (Design storm freque (Design storm Intens 23. Permissible bypass r #96 of s= max. References of the state of the state 19. Composite for and the state 10. Time of concentrations of the state 11. Time of concentrations of the state 12. Design storm Intens 13. Permissible bypass r	e area	m Area: MSDGC Manual of inance; if no local ry; upstream area to m sever as per Mt Ries and culubrations a	4.9 0.67 1.14 391 - 0.50 5 92 2.06 *96 . Prospec	acres acres acres acres acres year year inches/hour cfs.
	Determination of Reservo 12. Impervious drainage and 13. Pervious drainage and 14. Composite runolf of 15. Required reservoir of Permissible Bypass Rate of 16. Total area upstream 17. Future/present impu- 18. Future/present perv 19. Composite runolf of Procedures Article (20. Design storm freque (Design storm freque (Design storm freque (Design storm freque (Design storm Intens 23. Permissible bypass r #96 of s= max. References of the state of the state 19. Composite for and the state 10. Time of concentrations of the state 11. Time of concentrations of the state 12. Design storm Intens 13. Permissible bypass r	e area	m Area: MSDGC Manual of inance; if no local ry; upstream area to m sever as per Mt Ries and culubrations a	4.9 0.67 1.14 391 - 0.50 5 92 2.06 *96 . Prospec	ecre-feet acres acres acres year year inches/hour cfs. t

 ~ 1

X

-

ŝ

SCHEDULE D . DETENTION.

•	Sealars.	Information
I. –	TTOJESL	Information

C

	Nem	e of Proje	Ct (as sho	wn on plans)		The	Moori	ngs of	Arlington	h Heights	<u> </u>
		tion	801	Central		Arli	ngton	Hts.,	IL		
	Desig	șn criteria:	: MSDG	C []; Loca	l Governi	ment [χ];Oth	er { } .	<u> </u>		
H.	Dete	mination	of Allow	vable Reisse	Rata - U	ndevelo	oed Site	:	Northeast	: Detentio	on Basin
•••	1.	Area of a	lite						• • • • • • • • • •	<u> </u>	10 acres
	2.	Automa	م اممینم	lone							foot/foot
	3.	Overland	flow dis	tance						<u></u>	feet
	4.	Overland	i tiow tin	ne ot concent	ration						
	5.	Average	slope of	channelized fi	low (See	Note a)					foot/foot
	6.	Channeli	zed flow	distance (See	Note a).						feet
	7.	Channeli	zed flow	time of conc	entration						minutes
	8.	Total tim	he of con	centration (L	ine 4 + L	ine 7) .					minutes
	9.	Rainfall i	intensity	for three-yea	r storm .				•••••	<u>1.9</u>	<u>1 inches/hr.</u>
	10.	Runoff c	oefficier	nt (Use c=0.15	5 as maxi	mum, s	ee Articl	e 6-4b(1))	0.1	5
		of the M	SDGC M	anuali							
	11.1	Allowabl	e release	rate, (line 1)	k line 9 x	line 10	Q=ciA)		•••••	<u>0.</u> €	<u>0</u> cfs.
											hs, cross-sections
	NOTE			ven defined d I submit neces						icesci en iniĝi	
			opes ano								
.	Dete	mination	of Rece	voir Size - De	veloped	Site:					
	12.										
	13.									<u>2.</u> 1	
	14.									<u>0</u> .	
	15.										20 acre-feet
		·		•							
•	Perm			e through De							
	16.	Total are	a upstrei	IM				• • • • • •			acres
	17.	Future/p	resent in	npervious area	(cross o	ut inapį	propriat	e case) .	• • • • • • • • •	· · · · ·	acres
	18.										ecres
	19.	Composi	te runofi	i coefficient (Must not	be less	than 0.3	35 per Mi	SDGC Manual	of	
	20.										year
		• •		•				l ordinan	ce; if no local		
				ablished, use							
	21.	Time of (concentr	ation for the	upstream	area at	point o	f entry; u	ipstream area	to	•
		be consid	lered as i	developed. (E	ly same r	nethod	as line 8	•••••	• • • • • • • • •		minutes
	22.	Design st	orm inte	nsity for abo	re duratio	on		• • • • • •			inches/hou
	23.	Permissit	ole bypes	is rate (line 16	3 x line 1	9 x line	22)		• • • • • • • • • •		cfs.
INN	Miles	ha.									
		Giftene de	tention	reservoir is pr	ovided, s	ubmit s	eperate	schedule	s and calculati	ons as necessa	ry.
		To L		•	-		-				
		701	Don	ald Manha	rd Ass	ociat	es, Ir	າດ.			
Ļ,	<u></u>	i i m-j-					_				
÷	يت بيها		C	$\neg \uparrow$	5	INK /	->)			
		1	ignature.		$\sim \sim$	VILL		~7×1	roi. Eng.	Date <u>2/10/</u>	88
1	E	1. 5			(Ner	nc and "	litle)				
-	~	12					•				
ł	NY						6 A				
MINN	No.		•		بقادين العادان	5. S. S.	g et et j			·· • • •	

SCHEDULE D - DETENTION*

OFFICE COPY

(

NSDGC Permit 8 7 787

1	lame of Proj	ect (as shown on plan	ns)	ings of Arl:				
	Location		cal Road. Ar					
(Design criteri	: MSDGC []; Lo	cel Government	[]; Other []	<u></u>		EAST L	`
	•		- · · · · · · · · · · · · · · · · · · ·	d Man			EMOI L	AND
. 1	Determinatio	n of Allowable Relea	se Rate - Undevel	oped site:		<u> </u>	26 ecres	5
	••						014 foot,	/foot
							<u>) </u>	
	P A	s stand of changelizer	d flow (See Note .					/foot
	Channy	Alved flow distance (S	See Note al					
			11 to a 4 + 1 to a 7	1			IIIIII	
	Q Rainfa	i intensity for three-y	year storm			· · · ·	$_{}$ inch	es/hr.
	40 D	i nanditainne filles cuf	115 st maximum.	BRE AILICHE D'SDI	11			
	of the	MSDGC Manuali				· · · · · <u>- · · · ·</u>	<u>79</u> .	
	11. Allowa	ble release rate, (line	1 x line 9 x line '	10:Q=ciA)			AS PER	VILLACE
		flow in a well defined	d channel daterm	ine time of cooc	usr Intration from m	easured lengt	hs, cross-sect	IONS REST
	Note a: For and	slopes and submit ne	cessary calculatio	ons and drawings.				
•	Determinatio	n of Reservoir Size -	Developed Site:			2.	84 acre	5
	12. Imperi	ious drainage area ious drainage area				3.0	42 acre	15
	13, Pervio	vs drainage area site runoff coefficier	i e e e e è e e e e e e e e e e e e e e			0.1	70	
	14. Compi	site runoff coefficier ed reservoir capacity	nt (c), (Submit G (Submit calculat)	innsi		لمل	00 acre	e-feet
	15. Requir	Ed reservoir capacity	1980uut ceicolen		••••			
•	Permissible	Sypacs Rate through	Development Si	te from Upstream	n Area:		BC71	
•							ACT	- <i>-</i>
		Income Impersioned	area (cross out in	appropriate case)				
	to Entur	Increant pervicus are	ea (cross out inap)	propriate case) .				
	10 Como	wite runoff coefficier	nt (Must not be li	ess than 0.35 per	MSDGC Manual	01		
	Proce	lures Article 6-4b(2) .						r
	20. Design	storm frequency for	the upstream are	18	• • • • • • • • • • • • •			
	(Desig	n storm frequency sh	hall be as determine	ned by local ordi	NANCE; IT NO TOCAL			
		mant is atablished.	use 5-vr. storm fi	requency.)				
	21. Time	of concentration for 1	the upstream area	at point of entry	At nharise u sige		mi	nutes
	be cor	of concentration for t sidered as developed. storm intensity for t	. (By same meth	od as line d)	• • • • • • • • • • •		inc	hes/hour
	22. Design	storm intensity for a sible bypass rate (line	above duration.				cfs	•
	the Permi	sible bypass rate (line	• 10 x live 1A X I	IN# 22]				
	That Ye			•• •• •	فعادساهم اسمه حمان		i ATV.	
F.		detention reservoir i	is provided, subm	it separate sched			- 1.	•
F:	ore than on				da Tlldad	ie.		
F.:	ore than for	E .		Linc., Peor	18, 111100			
F. 122	ore than ord	Austin Las	neering Co					
F	ore than ori 751 eering Firm	Austin Ergi	neering Co	K. M				
F. 122	ering Firm		TAN CO	Marth		DeteO	ct. 20, 1	987
R. ma	P.E.	Austin Erst	Incering Co	Marth		Dets0	ct. 20, 1	987

OFFICE SOPY

SCHEDULE D - DETENTION*

GC Permit 8 7 787

The Moorings of Arlington Heights, Illinois Location 801 Central Road. Arlington Heights, Illinois Design crimins: MSDGC []; Local Government []; Other [] SOUTHEAST DETENTION BASIN 11. Determination of Allowable Release Rata - Undeveloped Site: 4.17 2. Average ground slope 900 3. Overland How distance 900 4. Consummer of concentration 900 5. Average dispose of channelized How Gistence (Eso Note a)	t,	. Pro	ject Information			
Design criteria: MSDGC []; Local Government []; Other [] SOUTHEAST DETENTION BASIN II. Determination of Allowable Release Rate - Undeveloped Site: 4.17 acres 1. Area of site 4.17 acres 2. Average ground slope 4.17 acres 3. Overland flow distance 950 feet 4. Goverland flow distance 950 feet 5. Average slope of channelized flow distance (See Note a)		Na	The Moorings of Arlington He	ights,	Illinois	
SOUTHEAST DETENTION BASIN II. Determination of Allowable Release Rate - Understoped Site: 4.17 acres 1. Area of site 4.17 acres 2. Average ground slope 4.17 acres 3. Overland flow distance (See Note a) 4.17 minutes 4. Greenant flow time of concentration 4.20 feet 6. Channelized flow time of concentration 4.21 feet 7. Channelized flow time of concentration		Lo	cation 801 Central Road, Arlington Heights, 111	inois		
II. Determination of Allowable Release Rete - Undeveloped Site: 4.17 acres I. Area of site 4.17 acres 2. Average ground slope 0.005 foot/foot 3. Overland flow distance 950 feet 4. Greenal flow distance 950 feet 4. Greenal flow distance 45 foot/foot 5. Average ground slope		De	ign criteria: MSDGC []; Local Government []; Other []			
1. Area of site 4.17 screst 2. Average ground slope 0.005 foot//loot 3. Overland flow distance 300 feet 4. Greated slope of channelized flow (See Note a) 45 minutes 5. Average slope of channelized flow distance (See Note a)				JTHEAST	DETENTIO	BASIN
2. Average ground slope: 0.005 foot/foot 3. Overland flow distance:						•
3. Overland flow distance 950 feet 4. Giverland flow time of concentration 45 minutes 5. Average lops of channelized flow (See Note a)			Area of site		<u> 4.17 </u>	, acres
4. Cvertage slope of channelized llow (See Note a)						
Average slope of channelized flow (See Note a) Average slope of channelized flow (See Note a) Channelized flow time of concentration Channelized flow time of concentration Channelized flow time of concentration Total time of concentration (Line 4 + Line 7) Assessment Average slope of channelized flow (See Note a) Average slope of channelized flow time of concentration Average slope of channelized flow time of concentration Average slope of channelized flow time of concentration Average slope and submit necessary calculations and drawings. Average slope of channel determine time of concentration from research length, cross-sections and slopes and submit necessary calculations and drawings. Average slope of channel determine time of concentration from research length, cross-sections and slopes and submit necessary calculations and drawings. Average slope of channel determine time of concentration from research length, cross-sections and slopes and submit necessary calculations and drawings. Average slope of channel determine time of concentration from research length, cross-sections and slopes and submit necessary calculations and drawings. Average slope of channel determine time of concentration from research length, cross-sections and slopes and submit necessary calculations and drawings. Average reserver slope of calculations Total RELEASE = 2,90 cfs (use 2,45 cfs es If there reserver slope of slee						
7. Chechelized flow time of concentration		-				
8. Total time of concentration (Line 4 + Line 7)						
10. Runoff ccefficient (Use c=0.15 as maximum, see Article 6-4b(1) 0.15 0 d the MSDGC Manual) 0.15 11. Allowable release rate, line 1 x line 9 x line 10:O-ciA) x.1.19 cfs. 11. Allowable release rate, line 1 x line 9 x line 10:O-ciA) x.1.19 cfs. Note a: For flow in a well defined channel determine time of concentration from measured lengths, cross-sections and submit necessary calculations and drewings. * 1.19 cfs + 1.79. cfs from lak TOTAL RELEASE = 2.98 cfs (use 2,45 cfs as 1.21 11. Determination of Reservoir Size - Developed Site: Y111age restructions) 12. Impervious drainage area 1.21 13. Pervious drainage area 2.96 14. Composite runoff coefficient (c). (Submit calculations) 0.63 15. Required reservoir capacity (Submit calculations) 0.58 16. Total area upstream acres 17. Future/present impervious area (cross out inappropriate case) acres 18. Puture/present pervious area (cross out inappropriate case) acres 19. Composite runoff coefficient (Must not be less than 0.35 per MSDGC Manual of Procedures Article 6-4b(2) year 20. Design storm frequency for the upstream area year 21. Time of concentration for the upstream area at point of entry; upstream area to be considered as developed. (By same method as line 8) minute						
of the MSDGC Manual)				• • • • • •	1.91	inches/hr.
11. Allowable release rate, (line 1 x line 9 x line 10:O-ciA). 11:0 cfs. Note s: For flow in a well defined channel determine time of concentration from measured lengths, cross-sections and slopes and submit necessary calculations and drawings. * 1.19.cfs + 1.79.cfs from lak TOTAL RELEASE = 2.98 cfs' (use 2.45 cfs as * 1.19.cfs + 1.79.cfs from lak 12. Impervious drainage area 1.21 erres 13. Pervious drainage area 2.98 cfs' (use 2.45 cfs as 14. Composite runoff coefficient (c). (Submit calculations) 0.63 erres 15. Required reservoir capacity (Submit calculations) 0.63 acres 16. Total area upstream scres scres 17. Future/present impervious area (cross out inappropriate case) scres scres 18. Future/present pervious area (cross out inappropriate case) scres scres 19. Composite runoff coefficient Must not be less than 0.35 per MSDGC Manual of Procedures Article 6.4b(2). year 20. Design storm frequency for the upstream area year 21. Time of concentration for the upstream area st point of entry; upstream area to be considered as developed. (By same method as line 8) minutes 22. Design storm frequency is above duration. cfs. minutes 22. Design storm frequency is provided, submit sepa		10.			~ \r	
Note s. Port How in a well defined channel determine time of concentration from measured lengths, cross-sections and slopes and submit necessary calculations and drawings. * 1.19.cfs + 1.79.cfs from lak TOTAL RELEASE = 2.98 cfs (use 2.45 cfs as TOTAL RELEASE = 2.98 cfs (use 2.45 cfs as 1.21 mervious drainage area. 11. Determination of Reservoir Size - Developed Site: Village restructions) 12. Impervious drainage area. 1.21 sorts 13. Pervious drainage area. 2.96 sorts 14. Composite runoff coefficient (c). (Submit calculations). 0.63 15. Required reservoir capacity (Submit calculations). 0.58 acres 16. Total area upstream acres 17. Future/present pervious area (cross out inappropriate case) acres 18. Composite runoff coefficient (Must not be less than 0.35 per MSDGC Manual of Procedures Article 64b(2). ecres 20. Design storm frequency for the upstream area year (Design storm frequency thall be as determined by local ordinance; if no local requirement is established, use 5-yr, storm frequency.) minutes 21. Time of concentration for the upstream area at point of entry; upstream area to be considered as developed. (By same method as line 8) minutes 22. Design storm intensity for above duration. cfs. 23. Time of concentration for the upstream area st point of entry; upstream area to be considered as developed. (By same method as line 8) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Note set of flow in a well defined channel determine time of concentration from messured lengths, cross-sections and slopes and submit necessary calculations and drawings. * 1.19.cfs +1.79.cfs from lak TOTAL RELEASE = 2.98 cfs (use 2.45 cfs as Village restructions) 11. Determination of Reservoir Size - Developed Site: Village restructions) 12. Impervious drainage area 2.21 scress 13. Pervious drainage area 2.26 scress 14. Composite runoff coefficient (c). (Submit calculations) 0.63 acresters 15. Required reservoir capacity (Submit calculations) 0.58 acresters 17. Future/present impervious area (cross out inappropriate case) scres scres 18. Total area upstream scres scres 19. Composite runoff coefficient (Must not be less than 0.35 per MSDGC Manual of Procedures Article 6-4b(2). year 20. Design storm frequency hall be as determined by local ordinance; if no local requirement is established, use 5-yr, storm frequency.) scress minutes 21. Time of concentration for the upstream area at point of entry; upstream area to be considered as developed. (By same method as line 8) minutes minutes 22. Design storm intensity for above duration inches/hour		11.	Allowable release rate, (line 1 x line 9 x line 10:0=ciA),		<u>*.1.19</u>	cfs,
and slopes and submit necessary calculations and drawings. * 1.19.cfs + 1.79.cfs from lak TOTAL RELEASE = 2.98 cfs (use 2.45 cfs as ************************************		Not	es: For flow in a well defined channel determine time of concentration from	IGE RES	TRICTIONS) Lisertions
Interview is a considered as developed Site: Village restructions) 12. Impervious drainage area 12. Impervious drainage area 12.1 Signature 12.1 Signature Intervious drainage area 12.1 Signature Colspan="2">Village restructions) 1.21 Signature Intervious drainage area 1.2.1 Colspan="2">Signature Intervious drainage area 2.98 cfs (use 2,45 cfs as Village restructions) 1.21 Signature Intervious drainage area 2.96 acres 1.12.1 Composite runoff coefficient (c). (Submit calculations) On the apperson area (cross out inappropriate case) Composite runoff coefficient (Must not be less than 0.35 per MSDGC Manual of Procedures Article 6-4b(2) Composite runoff coefficient			and slopes and submit necessary calculations and drawings		•	
11. Determination of Meservoir Size - Developed Size: Village restructions) 12. Impervious drainage area 1.21 serves 13. Pervious drainage area 2.96 serves 14. Composite runoff coefficient (c). (Submit calculations) 0.63 serves 15. Required reservoir capacity (Submit calculations) 0.63 serves 16. Total area upstream 0.58 serves 17. Future/present impervious area (cross out inappropriate case) serves 18. Future/present pervious area (cross out inappropriate case) serves 19. Composite runoff coefficient (Must not be less than 0.35 per MSDGC Manual of Procedures Article 64b(2) year 20. Design storm frequency shall be as determined by local ordinance; if no local requirement is established, use Evr. storm frequency.) year 21. Time of concentration for the upstream area at point of entry; upstream area to be considered as developed. (By same method as line 8) minutes 22. Design storm intensity for above duration. cfs. 23. Time of extension is provided, submit separate schedules and calculations as necrosov. effs. 24.11 more than one dutation reservoir is provided, submit separate schedules and calculations as necrosov. effs. 24.12 Mark Generation reservoir is provided, submit separate schedules and calculations as necrosov. 25.11 more than one dutation reservoir is			#1.	19.cfs	+1.79.cfs	sfrom lak
11. Determination of Meservoir Size - Developed Size: Village restructions) 12. Impervious drainage area 1.21 serves 13. Pervious drainage area 2.96 serves 14. Composite runoff coefficient (c). (Submit calculations) 0.63 serves 15. Required reservoir capacity (Submit calculations) 0.63 serves 16. Total area upstream 0.58 serves 17. Future/present impervious area (cross out inappropriate case) serves 18. Future/present pervious area (cross out inappropriate case) serves 19. Composite runoff coefficient (Must not be less than 0.35 per MSDGC Manual of Procedures Article 64b(2) year 20. Design storm frequency shall be as determined by local ordinance; if no local requirement is established, use Evr. storm frequency.) year 21. Time of concentration for the upstream area at point of entry; upstream area to be considered as developed. (By same method as line 8) minutes 22. Design storm intensity for above duration. cfs. 23. Time of accentration reservoir is provided, submit separate schedules and calculations as necrosov. effs. 24.11 more than one detention reservoir is provided, submit separate schedules and calculations as necrosov. effs. 23. Design storm intensity for above duration. file file 24.10 (se file file		. .	TOTAL RELEASE = 2	.98 cf	່s (use 2.4	5 cfs as
13. Pervious drainage area. 2.96 acres 14. Composite runoff coefficient (c). (Submit calculations). 0.63 0.63 15. Required reservoir capacity (Submit calculations). 0.58 acre-feet 1V. Permissible Bypass Rate through Development Site from Upstream Area: 0.58 acre-feet 16. Total area upstream				illage	restruct	ions)
14. Composite runolf coefficient (c). (Submit calculations). 0.63 15. Required reservoir capacity (Submit calculations). 0.58 15. Required reservoir capacity (Submit calculations). 0.58 16. Total area upstream ecres 17. Future/present impervious area (cross out inappropriate case) ecres 18. Future/present pervious area (cross out inappropriate case) ecres 19. Composite runoff coefficient (Must not be less than 0.35 per MSDGC Manual of Procedures Article 6.4b(2). year 20. Design storm frequency for the upstream area year (Design storm frequency shall be as determined by local ordinance; if no local requirement is established, use 5-yr, storm frequency.) minutes 21. Time of concentration for the upstream area at point of entry; upstream area to be considered as developed. (By same method as line 8) minutes 22. Design storm intensity for above duration. cfs. 14. If more than ork edition reservoir is provided, submit separate schedules and calculations as necrose. cfs. 14. If more than ork edition reservoir is provided, submit separate schedules and calculations as necrose. cfs. 15. Required the edition for the upstream area to be considered as fill the fill more than ork edition reservoir is provided, submit separate schedules and calculations as necrose. cfs. 14. If more than ork edition reservoir is provided,		-				
15. Required reservoir capacity (Submit calculations). 0.58 acre-feet IV. Permissible Bypass Rate through Development Site from Upstream Area: acres 16. Total area upstream acres 17. Future/present impervious area (cross out inappropriate case) acres 18. Future/present pervious area (cross out inappropriate case) acres 19. Composite runoff coefficient (Must not be less than 0.35 per MSDGC Manual of Procedures Article 6-4b(2). year 20. Design storm frequency for the upstream area. year (Design storm frequency shall be as determined by local ordinance; if no local requirement is established, use 5-yr, storm frequency.) year 21. Time of concentration for the upstream area at point of entry; upstream area to be considered as developed. (By same method as line 8) minutes 22. Design storm intensity for showe duration. inches/hour cfs. 23. The of concentration for the upstream area at point of entry; upstream area to be considered as developed. (By same method as line 8) minutes 23. Design storm intensity for showe duration. cfs. inches/hour cfs. 24. Market and other of entropy of the upstream area schedules and calculations as meastropy. inches/hour cfs. 24. Market and other of entropy of the upstream area schedules and calculations as meastropy. inches/hour cfs. 24. Market and time f		•	Pervious drainage area	• • • • • •		acres
IV. Permissible Bypass Rate through Development Site from Upstream Area: acres: 16. Total area upstream acres: 17. Future/present impervious area (cross out inappropriate case) acres: 18. Future/present pervious area (cross out inappropriate case) acres: 19. Composite runoff coefficient (Must not be less than 0.35 per MSDGC Manual of Procedures Article 6-4b(2). year 20. Design storm frequency for the upstream area: year 17. Time of concentration for the upstream area at point of entry; upstream area to be considered as developed. (By same method as line 8) minutes 22. Design storm intensity for above duration. minutes cits. 23. Time of concentration for the upstream area at point of entry; upstream area to be considered as developed. (By same method as line 8) minutes 23. Design storm intensity for above duration. cits. cits. 24. Must in Engineering Co., Inc., Peoria, Illinois cits. EXERCE Signature Date Oct. 20, 1987 Mame and Title) Date Oct. 20, 1987			Composite runoit coefficient (c). (Submit calculations)	• • • • • •	0.63	_
16. Total area upstream acres 17. Future/present impervious area (cross out inappropriate case) acres 18. Future/present pervious area (cross out inappropriate case) acres 19. Composite runoff coefficient (Must not be less than 0.35 per MSDGC Manual of Procedures Article 6-4b(2). acres 20. Design storm frequency for the upstream area. year (Design storm frequency shall be as determined by local ordinance; if no local requirement is established, use 5-yr, storm frequency.) year 21. Time of concentration for the upstream area at point of entry; upstream area to be considered as developed. (By same method as line 8) minutes 22. Design storm intensity for above duration. inches/hour 23. Function intensity for above duration. cfs. 24. Time of extention reservoir is provided, submit separate schedules and calculations as next (store). 25. Function Figure Getter 26. Signature Mine and Title) 27. Date Oct. 20, 1987		19.		• • • • • •		acre-teet
16. Total area upstream acres 17. Future/present impervious area (cross out inappropriate case) acres 18. Future/present pervious area (cross out inappropriate case) acres 19. Composite runoff coefficient (Must not be less than 0.35 per MSDGC Manual of Procedures Article 6-4b(2). year 20. Design storm frequency for the upstream area. year (Design storm frequency shall be as determined by local ordinance; if no local requirement is established, use 5-yr, storm frequency.) year 21. Time of concentration for the upstream area at point of entry; upstream area to be considered as developed. (By same method as line 8) minutes 22. Design storm intensity for above duration. inches/hour 23. Function for the upstream area at point of entry; upstream area to be considered as developed. (By same method as line 8) minutes 23. Design storm intensity for above duration. inches/hour cfs. 24. More than one detention reservoir is provided, submit separate schedules and calculations as next (sparate schedules and calculations as	IV.	Perm	issible Bypass Rate through Development Site from Upstream Area:			
17. Future/present impervious area (cross out inappropriate case)						acres
18. Future/present pervious area (cross out inappropriate case)		17,				
 Composite runoff coefficient (Must not be less than 0.35 per MSDGC Manual of Procedures Article 6-4b(2)		18.				
Procedures Article 6-4b(2)		19.				
 20. Design storm frequency for the upstream area						
(Design storm frequency shall be as determined by local ordinance; if no local requirement is established, use 5-yr. storm frequency.) 21. Time of concentration for the upstream area at point of entry; upstream area to be considered as developed. (By same method as line 8) minutes 22. Design storm intensity for above duration inches/hour 23. Design storm intensity for above duration inches/hour 24. Termissible bypass rate (line 16 x line 19 x line 22) cfs. 25. Termine than one detention reservoir is provided, submit separate schedules and calculations as necessory. 27. Reference for the engineering Co., Inc., Peoria, Illinois 28. Design sture Date Oct. 20, 1987 24. Name and Title) 29. Dete 2/10/99.		20.				VERT
requirement is established, use E-yr. storm frequency.) 21. Time of concentration for the upstream area at point of entry; upstream area to be considered as developed. (By same method as line 8) 22. Design storm intensity for above duration. 23. Tempissible bypass rate (line 16 x line 19 x line 22) 24. Tempissible bypass rate (line 16 x line 19 x line 22) 25. Tempissible bypass rate (line 16 x line 19 x line 22) 26. Tempissible bypass rate (line 16 x line 19 x line 22) 27. Tempissible bypass rate (line 16 x line 19 x line 22) 28. Tempissible bypass rate (line 16 x line 19 x line 22) 29. Tempissible bypass rate (line 16 x line 19 x line 22) 20. Tempissible bypass rate (line 16 x line 19 x line 22) 21. Tempineering Figure 22. Tempineering Figure 23. Tempineering Figure 24. Tempineering Figure 25. Tempineering Figure 26. Tempineering Figure 27. Tem						¥
21. Time of concentration for the upstream area at point of entry; upstream area to be considered as developed. (By same method as line 8)				••		
be considered as developed. (By same method as line B) minutes 22. Design storm intensity for above duration inches/hour inches/hour cfs. If more than one detention reservoir is provided, submit separate schedules and calculations as necessory. RECISTENCE ENGLINE ENGLINE ENGLINE Signature (Name and Title) Date Date Date 2/10/89		21.		a to		
22. Design storm intensity for above duration inches/hour inches/hour inches/hour cfs.		- • •				minutes
Cfs. Cfs.		22.				
If more than one detention reservoir is provided, submit separate schedules and calculations as noce (500). RECENTED Firm Firm France Ing Co., Inc., Peoria, Illinois ENGLER Signature Oct. 20, 1987 (Name and Title)	عدر .	A CA	Remissible bypass rate (line 16 x line 19 x line 22).			cfs.
RECISTERED EAUSTIN Engineering Co., Inc., Peoria, Illinois ENGLIER Signature (Name and Title) Bre. 2/10/89	State 1	R. F.				
RECISTERED EAUSTIN Engineering Co., Inc., Peoria, Illinois ENGLIER Signature (Name and Title) Bre. 2/10/89	·	inre th	an one detention receivers is provided, submit common sub-states and actually		•	
ENGLAS Signature Mine and Title) Date Oct. 20, 1987	ج . د	278			101 (\$975) •	•
ENGLAS Signature Mine and Title) Date Oct. 20, 1987	⇒:_Rεe	HSTE		.		
(Name and Title)	- Engin		Firm AUSTIN Engineering Co., Inc., Peoria, Illino:	18		
(Name and Title)	EN EN	<u></u>	B F / Los M/ Los Ma			
(Name and Title)	s :: 1	DÆ.		D	Oct. 20.	1987
Bott 2/10/00	14	SEA.	Alloren and Titlet	VIII		
James R. Franklin, P.E. Vice President				Rev.	2/10/88	
			James R. Franklin, P.E. Vice President		-1 -1 00	

SCHEDULE D . DETENTION*

(

Loca Desig	The Moorings of Arlington Heights ton	LAKE 14.86 0.0033 1200 45	ecres foot/foot feet minutes
Dete 1. 2. 3. 4. 5. 6. 7. 8.	m criteria: MSDGC {]; Local Government []; Other []	LAKE 14.86 0.0033 1200 45 	, acres , foot/foot , feet
Dete 1. 2. 3. 4. 5. 6. 7. 8.	Image: State of State of State of State of State WEST Area of site Average ground stope Overland flow distance Overland flow time of concentration Average slopp of channelized flow (See Note a) Channelized flow distance (See Note a) Channelized flow time of concentration Average slopp of channelized flow (See Note a)	LAKE 14.86 0.0033 1200 45 	, acres , foot/foot , feet
Dete 1. 2. 3. 4. 5. 6. 7. 8.	Image: State of State of State of State of State WEST Area of site Average ground stope Overland flow distance Overland flow time of concentration Average slopp of channelized flow (See Note a) Channelized flow distance (See Note a) Channelized flow time of concentration Average slopp of channelized flow (See Note a)	LAKE 14.86 0.0033 1200 45 	, acres , foot/foot , feet
1. 2. 3. 4. 5. 6. 7. 8.	mination of Allowable Release Rate - Undeveloped Site: Area of site Average ground slope Overland flow distance Overland flow time of concentration Average slopo of channelized flow (See Note a) Channelized flow distance (See Note a) Channelized flow time of concentration	14.86 0.0033 1200 45 	foot/foot feet
2. 3. 4. 5. 6. 7. 8.	Average ground stope	0.0033 1200 45	foot/foot feet
3. 4, 5. 6. 7. 8.	Average ground stope	<u>1200</u> <u>45</u>	feet
4, 5, 6, 7, 8,	Overland flow time of concentration		
5. 6. 7. 8.	Channelized flow distance (See Note a)	•	, minutes
6. 7. 8.	Channelized flow distance (See Note a)	•	
7. 8.	Channelized flow distance (See Note a)	•	, foot/loot
8.			, feet
	Total time of concentration (Line 4 + Line 7)	•	, minutes
9.			
	Rainfall intensity for three-year storm	. <u>1.91</u>	, in ches/ hr.
10.	Runoff coefficient (Use c=0.15 as maximum, see Article 6-4b(1)	0 15	
	Runoff coefficient (Use c=0.15 as maximum, see Article 6-4b(1) of the MSDGC Manual)	· -7. 02	
11.	Allowable release rate, (line 1 × line 9 × line 10:0=ciA),	4.20	cfs.
Note	a: For flow in a well defined channel determine time of concentration from measure	ed lengths, cross	u-sections
		• •	
		basin re	u cis deten estriction
Deter	ningtion of Records State, Developed Cites		
		5 0	
10.		•	
Permi	uible Bypass flate through Development Site from Upstream Area:		
16.	Total area upstream		acrès
17.	Future/present impervious area (cross out inappropriate case)	•	acres
18.	Future/present pervious area (cross out inappropriate case)		acres
19.	Composite runoff coefficient (Must not be less than 0.35 per MSDGC Manual of		
	Procedures Article 6-4b(2)	•	
20.	Design storm frequency for the upstream area	•	year
	· · · · ·	•	minutes
ς-F/		•	
ا م	· · · · · · · · · · · · · · · · · · ·	•	
275	n one contention reservoir is provided, submit separate schedules and calculations as		
	Austin Emineering Co., Inc., Feoris, 1111018		
GINEE			
PR.		Oct. 20.	1987
ri Ad			
		2/10/88	
	James R. Franklin, P.E. Vice President		
	Note 12. 13. 14. 15. Permi: 16. 17. 18. 19. 20. 21. 21. 22. 15. 18. 19. 19. 19. 19. 10. 19. 10. 19. 10. 10. 10. 10. 10. 10. 10. 10	Note a: For flow in a well defined channel determine time of concentration from measure and slopes and submit necessary calculations and drawings. Determination of Reservoir Size - Developed Site: 12. Impervious drainage area 13. Pervious drainage area 14. Composite runoff coefficient (c). (Submit calculations) 15. Required reservoir capacity (Submit calculations) 16. Total area upstream 17. Future/present impervious area (cross out inappropriate case) 18. Future/present pervious area (cross out inappropriate case) 19. Composite runoff coefficient (Must not be less than 0.35 per MSDGC Manuel of Procedures Article 6-4b(2) 20. Design storm frequency for the upstream area (Design storm frequency shall be as determined by local ordinance; if no local requirement is established, use 5-yr, storm frequency.) 21. Time of construction for the upstream area at point of entry; upstream area to be considered as developed. (By same method as line 8) 22. Design storm intensity for above duration. 23. Period caltention reservoir is provided, submit separate schedules and calculations at istered as developed. (By same method as line 8) 24. Design storm intensity for above duration. 25. Period caltention reservoir is provided, submit separate schedules and calculations at istered as developed. 26. Hermination frequency is provided, submit separate schedules and calculations at istered as developed. <t< td=""><td>Note a: For flow in a well defined channel determine time of concentration from measured lengths, cross and slopes and submit necessary calculations and drawings. * use 3.5 basin resumes and submit necessary calculations and drawings. Petrimination of Reservoir Size - Developed Site: 12. Impervious drainage area. 5.0 13. Pervious drainage area. 9.86 14. Composite runoff coefficient (c). (Submit calculations) -0.65 15. Required reservoir capacity (Submit calculations). -2.15 16. Total area upstream -2.15 17. Future/present impervious area (cross out inappropriate case) </td></t<>	Note a: For flow in a well defined channel determine time of concentration from measured lengths, cross and slopes and submit necessary calculations and drawings. * use 3.5 basin resumes and submit necessary calculations and drawings. Petrimination of Reservoir Size - Developed Site: 12. Impervious drainage area. 5.0 13. Pervious drainage area. 9.86 14. Composite runoff coefficient (c). (Submit calculations) -0.65 15. Required reservoir capacity (Submit calculations). -2.15 16. Total area upstream -2.15 17. Future/present impervious area (cross out inappropriate case)

SCHEDULE D . DETENTION*

2

	Project Information				71144-	
	Name of Project (as shown on ;	The Mooring	gs of Arlington	Heights,	1111n018	
		ntral Road. Arli	ngton Heights,	Illinois		
	Design criteria: MSDGC [].	; Locel Government [
				SOUTHWEST	DETENTION	BASIN
H.	Determination of Allowable Ri 1. Area of site	elease Rate - Undevelopi	id Site:	•	4.02	acres
					0.0008	foot/foot
					600	feet
	A Output from time of or	prentration				minutes
	4. Overland flow time of co 5. Average slope of channel	lized flow (See Note a)				foot/foot
	6. Channelized flow distant	s (See Note a).				feet
	7 Channelised flow time o	f concentration				minutes
	B Total time of concentrat	ion (Line 4 + Line 7)			42	minutes
	9. Rainfall intensity for the	ee-year storm			<u> 1.91 </u>	inches/hr.
	10. Runoff coefficient (Use	c=0.15 as maximum, see	Article 6-4b(1)		0.15	
					•	
	of the MSDGC Manual). 11. Allowable release rate, (I	ine 1 x line 9 x line 10:0	D=ciA)		<u> </u>	cfs.
	Note a: For flow in a well del		0.98 CFS AS PE	R VILLAGE	RESTRICTIO	N) -sections
	Note a: For flow in a well det	ined channel determine t necessary calculations (time of concentration	+1 45 + 4	.26 £rom 14	est lake
	and stopes and submit	CUACESSELA COLORITOUS (TOTAL RELEASE =	5.41cfs	(use 4.45	cfs as 1
					estruction	
HI.	Determination of Reservoir St	te - Developed Site:				
	12. Impervious drainage area				2 63	acres
	12 Province drainage avea.					acres
	14 Composite runoff coeffi	cient (c), (Submit Calcu	latio(15)			acre-feet
	15. Required reservoir caped	ity (Submit calculations)			
			11 A			
45.7	Deminikis Dunces Rote Mittel	wh Development Site fr	iom) Upstresm Area:			
IV.	Permissible Bypess Rate throu					acres
IV.	16 Total and uppercently					acres acres
IV.	16. Total area upstream	us area (cross out inapp			and the second division of the second divisio	
IV.	 Totel area upstream Future/present impervice Eutomoment carrieuts 	us area (cross out inappo	ropriate case)	• • • • • • • • • • • • •		
IV.	 Total area upstream Future/present impervice Future/present pervicus Composite runoff coefficient 	us area (cross out inappo area (cross out inapprop cient (Must not be less t 2)	ropriate case) vriate case) han 0.35 per MSDGC	Manual of	· · · · · · · · · · · · · · · · · · ·	
IV.	 Total area upstream Future/present impervice Future/present pervicus Composite runoff coefficient 	us area (cross out inappo area (cross out inapprop cient (Must not be less t 2)	ropriate case) vriate case) han 0.35 per MSDGC	Manual of	· · · · · · · · · · · · · · · · · · ·	
IV.	 Total area upstream Future/present impervice Future/present pervicus Composite runoff coeffit Procedures Article 6-4bit Design storm frequency 	us area (cross out inapprop area (cross out inapprop cient (Must not be less t 2)	ropriate case) priate case) han 0.35 per MSDGC	Manual of	· · · · · · · · · · · · · · · · · · ·	
IV.	 Total area upstream Future/present impervice Future/present pervices Composite runoff coeffit Procedures Article 6-4bit Design storm frequency (Design storm frequency) 	us area (cross out inappro area (cross out inappro cient (Must not be less t 2)	ropriate case) priate case) han 0.35 per MSDGC by local ordinance; if	Manual of	· · · · · · · · · · · · · · · · · · ·	
IV.	 Total area upstream Future/present impervice Future/present pervices Composite runoff coeffice Procedures Article 6-4bit Design storm frequency (Design storm frequency requirement is established 	us area (cross out inappropriate area (cross out inappropriate (Must not be less the second area area area area area area area are	ropriate case) priate case) han 0.35 per MSDGC by local ordinance; if (ency.) point of entry: upstree	Manual of no local		year
IV.	 Total area upstream Future/present impervice Future/present pervices Composite runoff coeffit Procedures Article 6-4bit Design storm frequency (Design storm frequency requirement is established Time of concentration for the considerant as development 	us area (cross out inappropriet (Must not be less t cient (Must not be less t 2) for the upstream area shall be as determined id, use 5-yr, storm frequ or the upstream area at (and . (By same method a	ropriate case) priate case) han 0.35 per MSDGC by local ordinance; if (ency.) point of entry; upstress s line 8)	Manual of no local um aria to		year minutes
IV.	 Total area upstream Future/present impervice Future/present pervicus Composite runoff coeffit Procedures Article 6-4bit Design storm frequency (Design storm frequency requirement is established Time of concentration for be considered as develop 	us area (cross out inapprop area (cross out inapprop cient (Must not be less t 2) for the upstream area d, use 5-yr, storm frequ or the upstream area at bed. (By same method a or above duration	ropriate case) priate case) han 0.35 per MSDGC by local ordinance; if (ency.) point of entry; upstress s line 8)	Manual of no local Im area to		year , year , minutes , inches/ho
IV.	 Total area upstream Future/present impervice Future/present pervicus Composite runoff coeffit Procedures Article 6-4bit Design storm frequency (Design storm frequency requirement is established Time of concentration for be considered as develop 	us area (cross out inapprop area (cross out inapprop cient (Must not be less t 2) for the upstream area d, use 5-yr, storm frequ or the upstream area at bed. (By same method a or above duration	ropriate case) priate case) han 0.35 per MSDGC by local ordinance; if (ency.) point of entry; upstread s line 8)	Manual of no local Im area to		year , year , minutes , inches/ho
IV.	 Total area upstream Future/present impervice Future/present pervicus Composite runoff coeffit Procedures Article 6-4bl Design storm frequency (Design storm frequency requirement is established Time of concentration fit be considered as develop Design storm intensity fit 	us area (cross out inapprop area (cross out inapprop cient (Must not be less t 2) for the upstream area . 7 shall be as determined id, use 5-yr, storm frequ or the upstream area at bed. (By same method a or above duration	ropriate case) priate case) han 0.35 per MSDGC by local ordinance; if ency.) point of entry; upstrea s line 8)	Manual of no local am aria to		year , year , minutes , inches/ho
IV.	 Total area upstream Future/present impervice Future/present pervicus Composite runoff coeffit Procedures Article 6-4bl Design storm frequency (Design storm frequency requirement is established Time of concentration fit be considered as develop Design storm intensity fit 	us area (cross out inapprop area (cross out inapprop cient (Must not be less t 2) for the upstream area . 7 shall be as determined id, use 5-yr, storm frequ or the upstream area at bed. (By same method a or above duration	ropriate case) priate case) han 0.35 per MSDGC by local ordinance; if ency.) point of entry; upstrea s line 8)	Manual of no local am aria to		year , year , minutes , inches/ho
	 Total area upstream Future/present impervice Future/present pervicus Composite runoff coeffit Procedures Article 6-4bl Design storm frequency (Design storm frequency requirement is established Time of concentration fit be considered as develop Design storm intensity fit 	us area (cross out inapprop area (cross out inapprop cient (Must not be less t 2) for the upstream area . 7 shall be as determined id, use 5-yr, storm frequ or the upstream area at bed. (By same method a or above duration	ropriate case) priate case) han 0.35 per MSDGC by local ordinance; if ency.) point of entry; upstrea s line 8)	Manual of no local am aria to		year , year , minutes , inches/ho
	 Total area upstream Future/present impervice Future/present pervicus Composite runoif coeffii Procedures Article 6-4bl Design storm frequency (Design storm frequency requirement is established Time of concentration f be considered as develop Design atorm intensity f Permissible bypess rate (R. F.R. 	us area (cross out inappropriet (Must not be less t 2)	ropriate case) priate case) han 0.35 per MSDGC by local ordinance; if ency.) point of entry; upstres s line 8) 22).	Manual of no local am aria to		year , year , minutes , inches/ho
	 Total area upstream Future/present impervice Future/present pervicus Composite runoif coeffii Procedures Article 6-4bl Design storm frequency (Design storm frequency requirement is established Time of concentration f be considered as develop Design atorm intensity f Permissible bypess rate (R. F.R. 	us area (cross out inapprop area (cross out inapprop cient (Must not be less t 2) for the upstream area , ahall be as determined id, use 5-yr, storm frequ or the upstream area at bed. (By same method a or above duration	ropriate case) priate case) han 0.35 per MSDGC by local ordinance; if ency.) point of entry; upstres s line 8) 22).	Manual of no local am aria to		year , minutes , inches/hc
	 Total area upstream Future/present impervice Future/present pervicus Composite runoif coeffii Procedures Article 6-4bl Design storm frequency (Design storm frequency requirement is established Time of concentration f be considered as develop Design atorm intensity f Permissible bypess rate (R. F.R. 	us area (cross out inappropriet (Must not be less t 2)	ropriate case) priate case) han 0.35 per MSDGC by local ordinance; if ency.) point of entry; upstres s line 8) 22).	Manual of no local am aria to		year minutes inches/ho cfs.
	 Total area upstream Future/present impervice Future/present pervicus Composite runoff coeffii Procedures Article 6-4bit Design storm frequency (Design storm frequency requirement is established Time of concentration fibe considered as develop Design atorm intensity fibe permissible bypess rate (R. FR FR Generation reserved 22.7.51 	us area (cross out inappropriet (Must not be less t 2)	ropriate case) priate case) han 0.35 per MSDGC by local ordinance; if ency.) point of entry; upstres s line 8) 22).	Manual of no local am arēs to calculations as i		year minutes inches/ho cfs.
IV.	 Total area upstream Future/present impervice Future/present pervicus Composite runoff coeffii Procedures Article 6-4bit Design storm frequency (Design storm frequency requirement is established Time of concentration fibe considered as develop Design atorm intensity fibe permissible bypess rate (R. FR FR Generation reserved 22.7.51 	us area (cross out inapprop area (cross out inapprop cient (Must not be less t 2) for the upstream area . 7 shall be as determined ind, use 5-yr, storm frequ or the upstream area at (bed. (By same method a or above duration	ropriate case) priate case) han 0.35 per MSDGC by local ordinance; if ency.) point of entry; upstress s line 8) 22). parate schedules and of nc., Peoria, Il	Manual of no local am aria to		year minutes inches/ho cfs.
	 Total area upstream Future/present impervice Future/present pervicus Composite runoff coeffi Procedures Article 6-4bl Design storm frequency (Design storm frequency requirement is established Time of concentration f be considered as develop Design storm intensity f Permissible bypess rate (F.F. F. Standard Classific Concentration f Design storm intensity f Permissible bypess rate (F.F. F. Standard Classific Concentration f Design storm intensity f Permissible bypess rate (us area (cross out inappropriet (Must not be less t 2)	ropriate case) priate case) han 0.35 per MSDGC by local ordinance; if ency.) point of entry; upstress s line 8) 22). parate schedules and of nc., Peoria, II MARA	Manual of no local am arēs to calculations as i		year minutes inches/ho cfs.

SPECIAL CONDITIONS FOR PERMIT NO. 87-787

- 1. All waste containing grease shall be discharged to a grease interceptor or grease trap before discharge into the sewer with the exception of restaurant dishwashers, which shall have their discharge bypass the grease separator or grease trap and discharge to an open drain or directly to the sanitary sewer.
- 2. This permit is issued in reliance upon the Affidavit of Disclosure of Property Interest (Schedule K) submitted by the owner, and said Affidavit is incorporated herein and made a part hereof.
- 3. The storm water detention facilities shown on the plans are made a part of this permit. Constructon of these facilities shall proceed prior to or concurrently with other construction on the project and shall be completed before any occupancy occurs. The detention is provided by two (2) lakes and four (4) detention basins with 6 outlet pipes as tabulated:

Basin/Lake	Outlet Pipe Diameter (inches)
North Basin	8
N.E. Basin	6
East Lake	8
S.E. Basin	6
West Lake	10
S.W. Basin	8

4. A swimming pool is not included under this permit. A new permit will be required for the swimming pool.

- OFFICE COPY
- 10. Other Construction. The MSDGC reserves the right, privilege and authority to permit others to reconstruct, change, alter and replace all sewers and appurtenances thereto at the point of connection of any sewerage system to an MSDGC interceptor and/or in public right-of-ways of MSDGC easements, and to introduce additional sewage flow through this connection into the intercepting sewer of said MSDGC.
- 11. Change of Use. This permit shall be incorporated in the Building and Occupancy Permit for the building or buildings served under this permit. The owner or occupant of any building served under this permit shall not cause, or permit, a change of use of the building to a use other than that indicated in this permit without first having obtained a written permission from the General Superintendent of the MSDGC.
- 12. Interceptors Overloading. The MSDGC hereby serves notice that its interceptors may flow full and may surcharge, and flooding of the proposed system may occur. The Permittee agrees that the proposed systems shall be constructed, operated and maintained at the sole risk of the Permittee.
- 13. Non-Transferability. This permit may not be assigned or transferred without the written consent of the General Superintendent of the MSDGC.
- 14. Termination. It is understood and agreed that in the event the Permittee shall default in or fail to perform and carry out any of the covenants, conditions and provisions of this permit and such default or violation shall continue for sixty (60) days after receipt or notice thereof in writing given by the General Superintendent of the MSDGC, then it shall be lawful for the MSDGC at or after the expiration of said sixty (60) days to declare said permit terminated. The Permittee agrees that immediately upon receipt of written notice of such termination it will stop all operations, discontinue any discharges and disconnect the sewerage system or facilities constructed under this permit. If the Permittee fails to do so, the MSDGC for said disconnection. The various rights and remedies of the MSDGC contained in this permit shall be construed as cumulative, and no one of them shall be construed as exclusive of any one or more of the others or exclusive of any other rights or remedies allowed by applicable rules, regulations, ordinances and laws. An election by the MSDGC to pursue any other rights or remedies provided under the terms and provisions of this permit or under any applicable rules, regulations, ordinances or laws.
- 15. Expiration. This permit shall expire if construction has not started within one (1) year from the date of issue. Construction under an expired permit is deemed construction without a permit. All construction under this permit shall be completed within two (2) years after start of construction. If conditions so warrant, an extension may be granted. For publicly financed projects (e.g. special assessments) the one (1) year period indicated will be considered from the date of final court action.
- 16. Revocation. In issuing this permit, the MSDGC has relied upon the statements and representations made by the Permittee or his agent. Any incorrect statements or representations shall be cause for revocation of this permit, and all the rights of the Permittee hereunder shall immediately become null and void.
- 17. Advance Notice. Prior to commencement of construction under this permit, the Permittee shall give the MSDGC an advance notice of at least two working days. When advance notice is given, the Permittee shall provide the permit number, municipality and location.
- 18. Compliance with Plans and Specifications. All construction shall be in accordance with the plans and specifications submitted for this permit and made a part hereof. No changes in, or deviation from the plans and specifications which affect capacity, maintenance, design requirements, service area or permit requirements shall be permitted unless revised plans shall have been submitted to, and approved by, the MSDGC. The permit together with a set of the plans and specifications, if any) shall be kept on the job site at all times during construction until final inspection and approval by the MSDGC.
- 19. Testing and Approval. All construction under this permit shall be subject to inspection, testing and approval by the MSDGC. All testing shall be made, or caused to be made, by the Permittee at no cost to the MSDGC and in the presence of the MSDGC representative. Upon satisfactory completion of construction, the Permittee and the owner shall submit, or cause to be submitted, a completion certificate and request for approval on the form prescribed by the MSDGC. No sewer or other facilities shall be put in service until all the conditions of the permit have been satisfactorily met.
- 20. "As-Constructed Drawings." Within sixty (60) days after final inspection and approval by the MSDGC, the Permittee shall furnish, or cause to be furnished to the MSDGC, a set of "As-Constructed" drawings, or a statement that the project was constructed in accordance with the original plans and specifications.
- 21. Compliance with Rules and Regulations. The Permittee hereby expressly assumes all responsibilities for meeting the requirements of all applicable rules, regulations, ordinances and laws of Local, State and Federal authorities. Issuance of this permit shall not constitute a waiver of any applicable requirements.

87-787

SPECIAL CONDITIONS: This parmit is issued subject to the MSDGC's General Conditions, Standard Conditions and the following Special Conditions:

MSDGC Permit No. IEPA

ATTACHED HERETO IS ONE PAGE OF SPECIAL CONDITIONS MADE A FART HEREOF.

OFFICE COPY

CERTIFICATE BY APPLICANTS: We have read and thoroughly understand the conditions and requirements of this permit application, and agree to conform to the permit conditions and other applicable requirements of the MSDGC. It is understood that construction hereunder, after the permit is granted, shall constitute acceptance by the applicants of any Special Conditions that may be placed hereon by the MSDGC. It is further understood that this application shall not constitute a permit until it is approved, signed and returned by the Chief Engineer of the MSDGC.

Title to permit premises is held in a land trust: Yes[], No [\times]. If yes, disclosure of beneficiaries is required.

NameJames R. Franklin, P.E.	Address 8100 N. University, Peoria, IL 61615
PERMITTEE	CO-PERMITTEE*
Municipality Village of Arlington Heights,	I Parkside Development Corporation c/o Lutheran General Health Care System
Address 33 S. Arlington Road	Address 1775 Dempster St.
Arlington Heights, IL Zip 60005	- Parkridge, III. Addis / Zip <u>60068</u>
Signature (1) de le Decl. Name & Title ACTING DIR. DE ENG.	Name & Robert F. Underwood Title Associate Director
Date 11.10.87 Phone 577 5625	Date Phone 312-696-7190
*(As required by MSDGC Ordinance; in other cases, as req	uested by Permittee)

SIB94 REGISTERED PROFESSED C ENCREMEN	REVIEW AND APPROVAL BY THE MSDGC Raymun . R. 4500 JK Date 4.8.88 (Local Sower Systems)
Dete of Issue:	3 1900 By: For the (Chief Engineer)

....

DETENTION REVIEW SHEET

Α.	PROJECT 87 787	
	Permit No. OI Date Received ////	2/88
	Name of Project The Moorings of Arlington Hots	
	Iocation 801 Central Road	
в.	Basic Information	
	1. Total Project Area 42.1 Acres	
	2. Impervious Area: (a) Existing 28; (b) New 11.0	•'
	3. Runoff Coefficient See Calculations	
	4. Project is: Residential \swarrow ; Non-Residential	
	5. Project is in flood plain area	yes/Ю
	6. Building Connections are proposed under this permit	ves/no
	7. Detention is required for the project covered by this permit	ves/no
	8. Detention is provided under this permit	ves/no
	9. Detention criteria: MSD; Other	
c.	Non-Applicability Detention requirements are not applicable for the reason(s) indicated:	
	1. Project is in combined sewer area	
	2. Total contiguous ownership is less than 5 acres	<u></u>
	3. Remaining developable ownership as of $1/1/72$ is less than 5 ocres .	
	4. Project is single family, residential and area is less than 10 acres	
	5. Project consists of an outlet sewer only and no connections are proposed	
	6. Project consists of sewer rehabilitation work only	
	7. Buildings existing and currently served by septic system	<u>. </u>
	8. No new impervious area proposed	. <u></u>
	9. Other	<u> </u>
D.	Relation with Other Projects	
	1. Detention required for this project is provided by existing/	

proposed detention facilities Facilities are covered by Permit No.

		MSD Per	87.78
	-	·	
D.	Relation with Other Projects	· · · · · · · · · · · · · · · · · · ·	
	 Detention facilities provided under this per to serve other areas		
	 Project covered by permit receives drainage area and the flow is bypassed 	from another	
	 This project is part of a previous developm five/ten acres and for which detention has provided in full or in part 		
	5. This project is part of a total contiguous exceeds five/ten acres and for which no det provided	land holding that cention has been	
	 6. This project is part of an area previously detention 	encumbered for	
E.	Design Summary	MSD Requirements	Project Design
	 Drainage area for which detention is provid under this permit 	ded xxxx	<u>39.41</u> _acre
	2. Detention requirements for area above	5.66 ac.ft.	10.94 ac.ft.
	3. Detention requirements for this project	5 <u>66</u> ac.ft.	1 <u>0.94</u> ac.ft. 8.97_cfs
	4. Release rate for drainage area (1) above	///28 cfs	<u>284</u> ,50 cfs
	5. Bypass rate, if any (Bypass is rented than the property without going then ponds)	295,26cfs	292.97 cfs
	6. Total discharge #96 cs then the proposed 4	+6" Dis P	
F.	Method of Detention (Beta, Furn House) 1. Method of Storage: Roof,Ground,Park		ther
	2. <u>Method of Control</u> : Roof Restrictor, Pipe Outlet, Size, I	. Weir •	
	Restrictor/Orifice, Size_	, Edge Type	
G	TRIB. Aren Ponol torration acit. Acit. css.	Actual Rel. Rest. Size V C85 Z'Z3 8-100 Long	(111031 A11. R.L
	2.10 N.Gast Basin 0.2 0.20 0160	0,60 6-90 Long	1.47 [2.45 bi
	6.26 East Like 1.0 2.73 1.79 2.98	1.0632.26 -40 Lors	0.98 J 4m to
	<u>A.17 S. East Bain 0.58 1.17</u> 14.86 West Lake 2.15 5.04 4.26	3:252 3:89 0:64 3:89 8"-32 :m	3.5 4.45
Á	3. 39.41 5.66 10:94 11.28	ked Date	6.40 h

.

and a second second second

Ş

· • •

LSS-72-09-01 Rev. 2/27/81

87-787 DETENTION RELEASE RATE SUMMARY TOTOL SITE AREA = 42.1 ACRES T_ = 45 MIN. I 3 = 1.91 = 1/4E c = 0.15ALLOWABLE SITE FELENSE RATE = (42.1)(1.91)(0.15)= = 12.06 CFS AREA TRIBUTARY TO DETENTION BASINS 8.0+ 2,10+ 6.26 + 4.17+14.86+ 4.02 = 39.41 Ac UNDETRINED AREA - HZ.10-39.41 = 2.69 AC IMPERVISUS AREA = Note: 0,48 Ac PERVIOUS ARFA = 2.21 AC Existing Impendet area is approximately $C = (0.4810.95) + (2.21 \times 0.2) - 0.33$ 2.8 Acs. on Which dut is not veginvent. (developed prim to 1972). Therefore Te = (45min) I 100 = 3.45 = MAR credit could be from (redit could be from (2.69)(3,45)(0.33) = 3.06 CFS the equal area. 4. ALLOWABLE DETENTION BASIN RELEASE = 1206-3.06 9.00 645 5 Allowelle Rhane 39.41 x1 91 × 0/5 = 11.29 CB. 12, 960 ACTUAL BASIN RELEASE RATES NORTH 2.23 CHS NORTHEAST 0.60 CFS EAST & SOUTHEAST 2.25 CHS V WEST & SOUTHWEST 3.89 CFS TATAL EDAGIN RELEASE B.97 CES Z 11.29 ole. 20= 19

NORTH DETENTION POND 87-787 ELEV. 689,5 VOLUME 70 - EL. 685.5 133 19 686 5328 1906 B496 5747 1.66 687 11664 9588 14 724 6 BB 17784 18,864 2.9. 3.92 689 19944 10360 18,43, 6895 / 21096 3.97 50013 = 1.15 AC.FH. TOTAL SS, TOB CF - 1.27 AF 6 ALLOWARLE REL. RATE = 2.29 SES 14 - 689.5 (HWL) - 685.47 (TOP OF B"PIPE) = 4.08 REGUME B" PIPE 9574 4.03 4.08 (0.349) 1+0.1 2.87 (0.013) (100) = 2.23 . 6(32,2) (0.67)* J / OK 2.26 USF B'BAT . 3 04 19

NORTH DETENTION BASIN

87-787

4 0= 19

Attachment 1

	· · · ·				
Duratio (Hrs.)	on Time	B Intensity for 100-Yr.Storm (In./Hr.)	C Inflow Rate (Line 1 x Line 14 x Col. B) (cfs)	D Stored Rate (Col. C-Line 11) (cfs)	E Reservoir Size
0.17	10	7.60	40.74	38.45	0.53
0,33	20	5, 50	29,48	27.19	0.76
0, 50	30	4.40	23.58	21.29	0,89
0.67	40	3. 70	19.83	17.54	0,97
0.83	50	3.20	17.15	14.86	٢.03
1.0	60	2.80	15.01	12.72	1.06
1.5	90	2.10	11.26	8 .97 °	1.12 H?
2.0	120	1.70	9.11	6.82	1.14
3.0	180	1.20	6.43	4.14	1.04
4.0	240	1.00	5.36	3,07	1.0Z

COMPOSITE 'C'

۰.

IMPERVIOUS AREA = 3.1 ACRES PERVIOUS AREA = 4.9 ACRES TOT. 8.0 Acres

 $C = (3.1 \times 0.95) + (4.9 \times 0.5) = 0.67 / 8.0$

i shara na shekara na shekara na Tana a 87-787 NORTHEAST DETENTION BASIN VOLUME TO ELEV 688.0 ELEV. 686.5 0 1494 94 687 5977 7318 TOTAL BBIZ CF 5314 = 0,20 AF 119 NC-ALLOWABLE RELEASE RATE = 0.60 CFS H - 688 (HWL) - 686,82 (Top or 6"PIPE) = 1.18 (:::) ASSUME 6" PIPE $Q = (0.196) \frac{1+0.1}{2(37.2)} \frac{2.87(0.013)^{2}(90)}{(0.5)^{4/3}}$ = 0.60 CFS USE 6" PIPE 5 0= 19

Attachment 1

88-787

	a on Time	B Intensity for 100-Yr.Storm	C 1.05 Inflow Rate (Line 1 x Line 14	D Stored Rate (Col. C-Line 11)	E Reservoir Size (Col. A(Hrs.)x Col. D
(Hrs.)	(Min.)	(In. /Hr.)	x Col. B) (cfs)	(cfs)	+ 12) (AcFt.)
0.17	10	7.60	7.98	7.38	0.10
0. 33	20	5, 50	5.78	5,18	0.14
0.50	30	4,40	4.62	4.12	0.17
0,67	40	3, 70	3.89	3.z9	0.18
0,83	50	3. 20	3.36	2.76	0.19
1.0	60	2,80	2.94	Z.34	0,20
1.5	90	2.10	2.21	1.61	0.20 🖛
2.0	120	1.70	1.79	١.١٩	0, 20
3.0	180	1,20	1.26	2.66	0,17
4.0	240	1,00	1.05	5,45	0.15

IMP. AREA = O AC. PERV. AREA = 2.10 Ac.

"确实了这些

 $C = 0.50^{\circ}$

GOF19

PEM 87-787 EAST LAKE VOLUME TO ELEV. 689 34,452 SF 686 44,784 SE 689 TOTAL ALLOWABLE KELEASE TO 48' STORM SEWER AS PER VILLAGE = 6.90 CFS TRIBUTARY AREA = 6.26 + 4.17 + 14.86 = 29.31 ACRES ALLOWABLE RELEASE RATE (EAST LAKE = **(**____ 6.26 69 = 1.47 CES · +/z * $\frac{H}{\frac{K_{e} + K_{o}}{2.9}} \frac{1/z}{D^{4/9}}$ <u>Q</u> = Q = 1.47 CFS N = RELEASE PIPE CROSS SECTION (8') = 0.349 SECTION H = NFAD = 689 - 688 = 1.0' (DIFF IN HUL) / L = LENGTH OF PIPE = 83' K= 1 Ko= 0.1 G = 37.2 n = 0.013= 0.67 D = PIPE DIAMETER 7<u>~</u> 9= (0,349) 1+0.1 2.87 (0.015)2(83) = 1.19 CFS OK 2(37.2) (0.67) 4/3 7 05 19 . USE B' PIPE

THE MOORINGS

EAST LAKE Attachment 1

87-787

Ē Reservoir Size

÷ 12) (Ac.-Ft.)

(Col. A(Hrs.)x Col. D

PEN

			Attachment 1	1.14
A	Time	1100-YT. Storm	C 4.38 Inflow Rate (Line 1 x Line 14 x Col. B) (cfs)	D 1.47 Stored Rate (Col. C-Line 11) (cfs)
(Hrs.)	(Min.)	(In. /Hr.)	x Col. B/ (C.S/	
	10	7,60	33.30	31.83

(Hrs.)	(Min.)]	(1n. / HT.)			
0.17	10	7.60	33.30	31.83	0.44
0.33	20	5, 50	24.10	22.63	0.63
		4.40	19,28	17.81	0.74
0.50	40	3. 70	16.21	14.74	0.82
0.67		3, 20	14.02	12.55	0.87
0.83	50	2.80	14.02	10.80	0.90
1.0	60			7.73 8.01	0.96
1.5	90	2.10	9.20	5.98 (11)	ic P 4
2.0	120	1.70	7.45	3.79 4 ···?	
6.3.0	180	1.20	5.26	z.91 3/19	
4.0	240	1.00	4.38		

Composite "C"

(

2.84 AC IMP. AREA 3.42 AC PER. DEFA 6.26 AC

 $C = \frac{(2.84)(0.95) + (3.42)(0.5)}{6.26} = 0.70$

Bor 19

87-787 OUTHEAST DETENTION BASIN NOLUME TO ELEV. 688 682 0___ 600 13600 683 599-4---684 63.88 -19368-685 10980 24840 13860 688 STAL PROVIDED = 50,802 CF $\cdot = 1.17 \text{ AF}$ ALLOWABLE RELEASE RATE - 4.17 690-0.98 CES 29.31 1.19 RELEASE RATE = 0.98 + 1,47 (EAST LAKE) = 2.45 CTS DSSUME G' RELEASE PIPE H = 688 (4ML) - 679.30 (TOP OF 6 PIPE) = 8.70' 0.5 A= 0.196 SF 8.70 1+0.1 2.87(0.013)2(40) = Z.25 CFS (0.196) 2(32.2) 10.50 USE G" RELEASE PIPE 9 00 19

87-787

Attachment 1

Pen

A Duration (Hrs.)	Time (Min.)	B Intensity for 100-Yr.Storm (In./Hr.)	C 2.63 Inflow Rate (Line 1 x Line 14 x Col. B) (cfs)	D 0.98 Stored Rate (Col. C-Line 11) (cfs)	E Reservoir Size (Col.A(Hrs.)xCol.D ÷ 12) (AcFt.)
0.17	10	7.60	19.99	19.01	0.26
0, 33	20	5, 50	14.47	13.49	0.37
0, 50	30	4.40	11.57	10.59	0.44
0.67	40	3.70	9,73	8.75	0.49
0.83	50	3.20	8.42	7,44	0.51
1.0	60	2,80	7.36	6.38	0.53
1.5	90	2, 10	5,52	4.54	0.57
2.0	120	1.70	4.47	3.49	0.58
3.0	180	1.20	3.16	2.18	0.55
4,0	240	1.00	2.63	1.65	0.55

COMPOSITE "C"

۰.

(

$$IMP. AREA = 1.21 Ac$$

$$PER. AREA = 2.96 Ac$$

$$= 4.17 Ac$$

an dh' maranna a sa shikaran edilar dhiran shi a bar an an an

 $C = (1.21 \times 0.95) + (296 \times 0.5) = 0.63$ 4.17

PEM 87-787 WEST LAKE VOL. TO ELEV. 690 462965F 54,900(4) 635045F S OH AF 686 690 ALLOWABLE REL. RATE = 29.31 3:50 H = 690 HML - 686.07 (TOP of 10" PIPF) = 3.93 ASSUME 10" PIPE 1/2 3.93 $\frac{1+0.1}{2(37.2)} + \frac{2.87(0.013)^2}{(0.83)^{4/3}} = 0.545$ -のイ USE 10" PIPE 11 OF 19

WEST LAKE

87-787

the second s

Atta	chm	<u>ent 1</u>	

			—		Cardina and Cardina an
A	Time	B Intensity for 100-Yr.Storm	9.66 C Inflow Rate (Line 1 x Line 14 x Col. B) (cfs)	3.50 D 3.25 Stored Rate (Col, C-Line 11) (cfs)	E Reservoir Size (Col. A(Hrs.)x Col. D + 12) (AcFt.)
(Hrs.)	(<u>Min.</u>) 10	(<u>In. / Hr.</u>) 7.60	73.42	69.92	9 .97
0.17	20	5, 50	53.13	49,63	1.37
0.33		4.40	42.50	39,00	1.62
0.50	40	3.70	35.74	32.24	1.79
0,67 0.83	50	3.20	30.91	27.41	1.90
1.0	60	2.80	27.05	23.55	1.96
1.0	90	2.10	20.29	16.79	2.10
2.0	120	1.70	16.42	13.17 12.92	2.15
3.0	180	1.20	11.59	8.09	2.02
4.0	240	1.00	9.66	6.16	2.05

Composite 'c'

.

IMP. ARFA = 5.0 AcPERV. ARFA = 9.86 AcTot 14.86 Ac.

 $C = (5.0 \times 0.95) + (9.86 \times 0.50)$ = 0.65 14.86

PEM

PEM 87-787 DETENTION POND SOUTHWEST ELEV. 688.0 VOLUM 0 684.65 235 2160 685 7182-12,204 / 13,302 -686 15,516 20,790 687.5 TOTAL = 36,235 4 = 0. RELEASE RATE = 4.02 690 = 0.95 CES GUE 29,31 6 - 0.95 + 3,50 (FROM WEST TOTAL REL RATE SSUME 8" PIPE 688 (KWL) - 682.58 (TOP OF 8"PIPE) = 5.42' 5.42 $\frac{1+0.1}{2(32.2)} + \frac{2.57(0.013)^2(52)}{(0.67)^{4/3}}$ = 3.89 crsv B" PIPE しりょ ŝ, 13 OF 19

SOUTHWEST BASIN

.

87-787

14 05 19

PEM

	1	ent	1,111	<u>tta c</u>	- A '
	_				

				0,64	
A Duration (Hrs.)	Time	B Intensity for 100-Yr.Storm (In./Hr.)	C 2.45 Inflow Rate (Line 1 x Line 14 x Col. B) (cfs)	D 95 Stored Rate (Col. C-Line 11) (cfs)	E Reservoir Size (Col. A(Hrs.)x Col. D + 12) (AcFt.)
0.17	10	7.60	20.14	19.19	0.27
0.33	20	5, 50	14.58	13.63	0.38
0.50	30	4.40	11.66	15.01	0.45
0.67	40	3, 70	9.81	8.86	0.49
0.83	50	3,20	B.48	7.53	0.52
1.0	60	2.80	7.42	6.47 H	
1,5	90	2.10	5.57	4. 52 3	
2.0	120	1.70	4.51	3.56 2	54 0.59
3.0	180	1.20	3.18	2.23	0.56
4.0	240	1.00	Z .65	1,70	0.57

COMPOSITE "C"

(

IMP.	Arfa	1.39 AC
PER.	AREA	2.63 AC
		4.02 AC

 $C = (1.39 \times 0.95) + (2.63 \times 0.50) = 0.66$ 4.02

NO 10/14/87 N39 87-787 THE MOORINGS DESIGN CALCULATIONS FOR STORM SEWER SYSTEM BYPASS TAE (SEE ATTACHED MAP) EXISTING OUTLET STORM SEWER & SOUTHEAST CORNER OF THE PROJECT = 72" PIPE @ 0.20% EXISTING INLET STORM SENTE FROM SOUTH 4 B" PIPE @ 0.27% ADDITIONAL CONTRIBUTING AREA FROM SOUTH OVERIAND INTO EXISTING FIELD TILES A= 10 ACRES, L = 1200', T_ = 40 MW., IS= 2.59" //12 C = 0.35 CALCULATE ALLOWABLE BYPASS FROM THE WEST ALONG THE PROJECT'S SOUTH PROPERTY LINE, ASSUMING PIPES FLOWING FULL 180 CFS EXISTING 72" PIPE CO.20% 2 - 75 CFS LESS EXISTING 48" PIPE C 0,27% LESS CONTRIBUTING ARPA Q = (0.35)(2.59(10 AC) = - 9 CFS ALLOWABLE BAPASS = 96 CES (AS REQUIRED BY MOUNT PROSPECT ". USE 48" PIPE @ 0,48% DONALD MANHARD & ASSOC LINCOLLGUIRE, 16 15 PF 19

Mo 10/14/07 PEM THE MOORINGS 87-787 DESIGN CALCULATIONS FOR THE BAPASS DITCH ALONG S.P.L. (SEE ATTACHED MAP) C = COMPOSITE RUNDER FACTOR POR EXISTING CONDITIONS OF ENTIRE TRIBUTARY AREA = 0,50 - TRIBUTARY AREA TO BYPASS DITCH : A' = O ACRES (TLIBUTARY EAST OF PROPERTY ARTA B-1' = O ACRES (TEIGOTARY EAST OF POOPENTS AREA 'B-2' = O AREES, REL. RATE OF 69 CFS APTA B-3'= 25 ACETS AREA' B-4' -115 ACRES ' <u>C-1' =</u> 190 ACRES AREA. O ACRES (TRIBUTARY CENTRAL AVE.) ARFA 'C-2' = 61 ACRTS 'D' = DREA TOTAL TRIBUTARY ARFA = 341 ACRES TC = TIME OF CONCENTRATION = 92 MIN. I 100 - 100 YEAR RAINFALL INTENSITY = 2.06 - MAR QLOS = 100 TEAR TRIBUTARY RUNDER = CIA + AREA B-2 REL.RATE = (0.50)(391)(2.06)+6.9 = 410 (FS THIS QUANTITY WILL BE REDUCED BY THE EXISTING 54" PIPE ON APHINGTON WEIGHTS ROAD \$ THE PROPOSED 48" PIPE ALONG THE SOUTH PROPERTY LING. DONALD MANHARO As Follows: FRISTING 54" PIPE CONEY. =126 LFS 4 14500 PROPOSED HB" PIPE COMBY = 96 LFS LINCHAISUNG TO TOTAL BYPESS = 222 CFS 11 # 14

10|14|81 10|14|81 2-• and the second ومترجب والمتحدث TOTAL REQUIRED BYPASS DITCH CAPACITY 41000 - 22200 = 188 CFS QATERSE 87-787 BYPASS DITCH OFSIGN 5 - SLOPE = 0.30% M = COEFFICIENT OF ROUGHNESS = 0.025 24. 10'+ 6.7' + 6.7' = 23.4' No . 1.12: 1 (2(12,26)+10) 3= H85F 2.05 48 = HTD. RADIUS = A 2 23.4 No 5.2 FPS (SEE ATTACHED CHAPT 6 = AV = 48 × 5.2 = 250 CFS / > 188 CFS = MAX. PROPOSED CAPACITY > REQUIRED 100 YEAR BYPAGE 5 3 Sile :-10 TYPICAL DITCH CROSS-SECTION DONALO MANHARO & Assoc -(LINCOLNGNIAG IL 16 OF 19

THE MODEINGS OF ARLINGTON HTS. UPSTREAM DRAINAGE AREAS

19 . F. 19

SEWER LINE AGREEMENT

For The Mooring, of Alington Heights

DFFICE COPY

This Agreement made this 28th day of March, 1988, by and between PARKSIDE DEVELOPMENT CORPORATION d/b/a THE MOORINGS, a Delaware non-profit corporation, with its office and principal place of business at 1775 West Dempster Street, Park Ridge, Illinois 60068 (hereinafter referred to as "PDC") and KIMBALL HILL, an individual with his principal place of business at 900 Des Plaines Avenue, Des Plaines, Illinois 60016 (hereinafter referred to as "Kimball Hill").

WITNESSETH

WHEREAS Kimball Hill owns and maintains the sanitary sewer along Central Road in Arlington Heights, Illinois (hereinafter "Sewer");

WHEREAS PDC is the owner of a certain parcel of property upon which it is developing an older adult retirement facility and health care center located at 801 Central Road, Arlington Heights, Illinois, known as The Moorings (hereinafter referred to as "Facility"); and

WHEREAS PDC is desirous of connecting the Facility to the Sewer if the same is extended southerly toward the Facility.

NOW THEREFORE, the parties hereto, in consideration of the mutual covenants and agreements herein, do hereby agree as follows:

Section 1. Construction of Sewer Line

19月1日月日 化黄

87 787

Subject to the terms and conditions of this Agreement, PDC is granted the perpetual non-exclusive right to construct a sanitary sewer line (the "Project") northerly across its property suitable for the Facility's connection to the Sewer at Central Road. Section 2. Payment of the Tap-in Fee

a sa an an an

PDC agrees to pay Kimball Hill upon the execution of this Agreement a one-time tap-in fee for the perpetual non-exclusive right to tap-on to and use the Sewer for the entire Facility's sanitary sewage needs.

87-787

Section 3. Notice to Governmental Authorities

Upon execution of this Agreement, Kimball Hill will, upon the request of PDC, notify the Metropolitan Sanitary District ("MSD"), the Village of Arlington Heights ("Village") and other appropriate parties of the grant by Kimball Hill to PDC to tap-in to the Sewer in accordance with the terms of this Agreement. PDC shall obtain all required governmental and other permits, licenses, approvals and other consents, and shall comply with all applicable laws, rules and

regulations.

Section 4. <u>Title to the Sewer Line</u>

Title to the Sewer is vested in Kimball Hill. Neither PDC, the Village or MSD shall have any claim of ownership in or to the Sewer or

the Project.

Section 5 <u>Maintenance of the Sewer Line</u>

Kimball Hill shall keep and maintain, or cause to be kept and maintained, the Sewer and its related systems in good operating condition, repair and working order, ordinary wear and tear excepted, and will provide, at its own expense, all maintenance and service and make all repairs necessary for such purpose.

-2-

Section 6. Indemnification

6

The parties agree to indemnify and hold each other harmless from any liability claim for personal injuries, deaths, mechanics liens, judgments, lawsuits, claims or other costs, including reasonable attorneys' fees, arising out of or in connection with the intentional or negligent acts of their respective employees and/or agents as a consequence of or resulting from, directly or indirectly, the tap-in or use of the Sewer.

87-787

1.25

Section 7. <u>Termination for Breach of Contract</u>.

If either party shall violate any of the covenants undertaken herein, or any of the duties imposed upon it by this Agreement, such violation shall entitle the other party to terminate this Agreement, provided that the party desiring to terminate for such cause shall give the offending party at least thirty (30) days written notice, specifying the particulars wherein it is claimed that there has been a violation hereof; and if at the end of such time the party notified has not removed the cause of complaint, or remedied the purported violation, then the termination of this Agreement shall be deemed complete.

Section 8. Specific Performance

The parties hereto each acknowledge and agree that in the event of any breach of this Agreement, the non-breaching party would be irreparably harmed and could not be made whole by monetary damages alone. It is accordingly agreed that such parties, in addition to any other remedy to which they may be entitled at law or in equity, shall

-3-

87-787

Ĩ,

be entitled to compel specific performance of this Agreement in any action instituted in any Court of the United States or any state having subject matter jurisdiction.

Section 9. Amendments

This Agreement may be amended only by a written instrument signed by all parties to this Agreement.

Section 10. Law of the State of Illinois to Govern

This Agreement and the rights and obligations of the parties hereunder shall be governed by, and construed in accordance with, the laws of the State of Illinois.

Section 11. Successors and Assigns

This Agreement shall be binding upon and shall inure to the benefit of the parties hereto and their heirs, successors and assigns. This Agreement may not be assigned by any party without the consent of all the other parties.

Section 12. Interpretation of Agreement

The rule of strict construction does not apply to this grant. This grant shall be given a reasonable construction so that the intention of the parties to confer a commercially useable right of enjoyment to the Sewer is carried out.

Section 13. Notices

والأعرب والمراجع والمراجع والمراجع

All notices and other communications shall be sufficiently given and shall be deemed to be given when hand delivered or mailed by registered or certified mail, postage prepaid, addressed as follows:

-4-