
September 2016

Thomas Middle School

Traffic and Parking Study

Prepared for:

Arlington Heights School District 25

Eriksson Engineering Associates, Ltd.

145 Commerce Drive, Suite A Grayslake, IL 60030 (847) 223-4804 601 W. Randolph St., Suite 500 Chicago, IL 60661 (312) 463-0551

INTRODUCTION

Eriksson Engineering Associates, Ltd. (EEA) was retained by Arlington Heights School District 25 (AHSD 25) to conduct a traffic and parking study for the proposed expansion of Thomas Middle School in Arlington Heights, Illinois. Thomas Middle School is located on the south side of Thomas Street between Arlington Heights Road and Belmont Avenue. The current enrollment of the school is 950 students in Grades 6th thru 8th with 127 staff members.

A proposed expansion of the school will provide additional space for the existing students and serve the projected growth in student population with a new gym and additional classrooms. Long term projections expect the enrollment to reach 1,030 students. The number of staff is expected to increase from 127 to 135 persons.

The purpose of the study was to observe the existing traffic patterns around the school, determine the traffic characteristics of the existing and expanded school, review the parking needs, and develop roadway and parking recommendations.

EXISTING CONDITIONS

Site Location and Area Land-Uses

The existing school is located at the southeast corner of Arlington Heights Road and Thomas Street in Arlington Heights, Illinois within in a single-family neighborhood. A church and a park are to the east of the school. West of Arlington Heights Road, there are a number of medical office buildings. Olive-Mary Stitt Elementary School is located a quarter mile to the south. **Figure 1** illustrates the site location and the surrounding land-uses and roads. (Note: all figures are located at the end of the report).

Bicycle and Pedestrian Routes

Thomas Street and Belmont Avenue are designated on-street bike routes. Public sidewalks are located along both sides of the streets around the school. The intersection of Thomas Street at Belmont Avenue has crosswalks on all four legs. Crosswalks with pedestrian signals are provided at Arlington Heights Road and Thomas Street.

Roadway Characteristics

A description of the area roadways providing access to the site is provided below:

Arlington Heights Road is a north-south major arterial roadway extending from Elk Grove Village thru Arlington Heights to Long Grove. It has two travel lanes in each direction with a painted left-turn lane. At Thomas Street, Arlington Heights Road is signalized with painted crosswalks/pedestrian signals on all four legs. The posted speed limit is 30 miles per hour and is under the jurisdiction of the Illinois Department of Transportation (IDOT). No right turn on red is permitted on school days when children are present.

Thomas Street is a secondary arterial east of Arlington Heights Road and a collector road west of Arlington Heights Road. It has one travel lane in each direction and left-turn lanes at its signalized intersection with Arlington Heights Road and its two-way stop intersection at Belmont Avenue which includes an eastbound right-turn lane. The posted speed limit is 25 miles per hour with a 20 mph school speed zone by the school. It is under the jurisdiction of the Village of Arlington Heights. No standing, stopping, or parking is permitted on either side of Thomas Street along the school's frontage.

Belmont Avenue is a two-lane local road extending north of Olive Street. The posted speed limit is 25 miles per hour with a 20 mph school speed zone by the school and is under the jurisdiction of the Village of Arlington Heights. A bump out loading zone is provided on the west side of Belmont Avenue.

Existing Traffic Volumes

Thomas Middle School starts the school day at 7:50 AM and ends at 2:45 PM. Weekday morning (7:00 to 8:30 AM) and afternoon (2:00 to 3:30 PM) manual traffic counts of vehicles and pedestrians were conducted in May, 2015 at the following intersections:

- Arlington Heights Road and Thomas Street
- West School Parking Lot Exit and Thomas Street
- Belmont Avenue and Olive Street
- South School Parking Lot Drive on Belmont Avenue

These counts showed the peak-hours of traffic occurring from 7:00 to 8:00 AM and 2:30 to 3:30 PM on a weekday. The existing traffic volumes are shown in **Figure 2** and included in the **Appendix**. **Figure 3** illustrates the pedestrian volumes around the school.

Existing School Operations

During the morning arrival period, 6th Grade parents are instructed to enter the West Parking Lot from Thomas Street, drop-off their student(s) and the exit right back onto Thomas Street. 7th and 8th grade parents are instructed to drop-off students on the west side of Belmont Avenue by the school. School buses also use the west side of Belmont Avenue to drop-off students. The South Lot is only used by teachers and visitors and is not open during arrival and dismissal. A copy of the school traffic procedures is included in the **Appendix**.

During the afternoon dismissal period, school buses are staged in the West Parking lot to pickup students. All grades are picked up from the Belmont Average frontage.

Crossing guards are on Thomas Street at Belmont Avenue and at Arlington Heights Road before and after school.

SITE TRAFFIC CHARACTERISTICS

Site Plan

The proposed building plan includes additional commons space at the east side of the building and new gym locker rooms, office expansion and lobby along the south side of the building. Existing locker and fitness rooms will be renovated into a band room, music room, and classrooms. Parking will be increase with an expansion of the south parking lot from 27 spaces to 66 spaces and a second driveway added to the south end of the lot. The west parking lot will not be modified.

Trip Generation

Thomas Middle School currently serves 950 students and uses 11 school buses for transportation. With the expansion, the school population is projected to grow to 1,030 students or a net increase of 80 students over the next several years. One additional school bus may be needed in the future to accommodate the growth.

Traffic estimates were made for the additional students using the traffic counts at the current school. The trip generation rates for the existing school are higher than the data provided by the Institute of Transportation Engineer's <u>Trip Generation</u>, 9th Ed. manual for elementary schools due to a higher percentage of automobile usage. The rate of vehicle trip generation was applied to the proposed increase in students with the results shown in **Table 1**.

Table 1
School Expansion Traffic Volumes

Scenario	Мо	rning Ar	rival	Afterr	noon Dis	missal
Scendilo	In	Out	Total	In	Out	Total
Trip Generation Based on Exist	ing Traffic	Volume	5			
Existing 950 Students	364	278	642	104	139	243
Total 1,030 Students	394	303	697	112	151	263
Net Additional Traffic	+30	+25	+55	+8	+12	+20
ITE Trip Generation Comparison	n ⁽¹⁾					
Existing 950 Students	282	231	513	128	1 <i>57</i>	285
Total 1,030 Students	306	250	556	139	170	309
Net Additional Traffic	+24	+19	+43	+11	+13	+24

⁽¹⁾ ITE Trip Generation Manual, 9th Edition – Land Use Code 522 (Middle/Junior High Schools)

Trip Distribution

The trip distribution for school is based on the existing traffic volumes at the school, the road network, and the circulation system. Based on the school's boundaries (see **Appendix**), the majority of the traffic approaches the school from Arlington Heights Road or west Thomas Street, circulates around the school, and exits southbound on Belmont Avenue. The trip distribution for the school is shown in **Table 2** and **Figure 4**.

Table 2
Directional Distribution

Direction	Inbound Percentage	Outbound Percentage
North on Arlington Heights Road	23%	0%
South on Arlington Heights Road	12%	0%
West on Thomas Street	37%	0%
East on Thomas Street	17%	36%
North on Belmont Avenue	4%	3%
South on Belmont Avenue	7%	61%
Total	100%	100%

Trip Assignment

The future vehicular trips that are generated by the expansion were distributed to the area roadways based on the directional distribution analysis and the proposed expansion plan. Figure 5 displays the trip assignment for the projected site traffic volumes. Figure 6 shows the Total Traffic volumes, which are the sum of the existing traffic volumes and the site traffic volumes.

Intersection Capacity Analyses

An intersection's ability to accommodate traffic flow is based on the average control delay experienced by vehicles passing through the intersection. The intersection and individual traffic movements are assigned a level of service (LOS), ranging from A to F based on the control delay created by a traffic signal or stop sign. Control delay consists of the initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. LOS A has the best traffic flow and least delay. LOS E represents saturated or at capacity conditions. LOS F experiences oversaturated conditions and extensive delays. The <u>Highway Capacity Manual</u> definitions for levels of service and the corresponding control delay for both signalized and unsignalized intersections are shown in **Table 3**.

Table 3
Level of Service Criteria for Intersections

Level of	Description		ol Delay s/vehicle)
Service	•	Signals	Stop Signs
Α	Minimal delay and few stops	<10	<10
В	Low delay with more stops	>10-20	>10-15
С	Light congestion	>20-35	>15-25
D	Congestion is more noticeable with longer delays	>35-55	>25-35
Е	High delays and number of stops	>55-80	>35-50
F	Unacceptable delays and over capacity	>80	>50

Source: Highway Capacity Manual 2010

Capacity analyses were conducted for each intersection using the computer program Highway Capacity Software (HCS) to determine the existing operating conditions of the access system. These analyses were performed for the school's peak arrival and dismissal periods. **Table 4** shows the existing and future level of service results for each intersection. Copies of the capacity analysis summaries are included in the **Appendix**. Overall, the intersections are working well around the school and will continue to do so.

Table 4
Intersection Level of Service and Delay

Intersection	Massausaut	AM A	rrival	PM Dis	smissal
Intersection	Movement	Existing	Future	Existing	Future
Thomas Street at:					
Arlington Heights Road (Traffic Signal)	Intersection	C-26.3	C-26.8	C-22.1	C-23.2
West Lot Access	NB Lt/Rt	D-27.8	C-20.2	B-14.1	B-12.6
(Two-Way Stop)	WB Left	A-10.0	B-10.1	A-8.6	A-8.6
	EB Lt/Th/Rt	A-8.2	A-8.2	A-8.5	A-8.5
Belmont Avenue	WB Lt/Th/Rt	A-9.3	A-9.6	A-8.4	A-8.5
(Two-Way Stop)	NB Lt/Th/Rt	D-27.0	D-30.4	C-24.1	C-24.9
	SB Lt/Th/Rt	C-20.1	C-22.0	B-15.0	C-15.5
Belmont Avenue at:					
	EB Lt/Th/Rt	C-15.5	C-15.9	B-11.7	B-11.8
North Lot Drive	WB Lt/Th/Rt	B-12.0	B-12.2	A-9.3	A-9.4
(Two-Way Stop)	NB Lt/Th/Rt	A-9.4	A-9.5	A-8.4	A-8.5
	SB Lt/Th/Rt	A-7.3	A-7.3	A-7.4	A-7.4

Arlington Height Road at Thomas Street

The traffic signal at Arlington Height Road and Thomas Street works well and will not be significantly impacted by the school expansion. Since Arlington Heights Road is an arterial route, it gets the majority of the green time at the signal and the side street gets less. Thomas Street traffic has higher delays but still falls within acceptable ranges. No improvements are needed to accommodate the school expansion.

West Lot Access on Thomas Street

The driveway is designed to allow right and left turns from Thomas into the West Lot and the outbound is restricted to a right-turn out due to its proximity to Arlington Heights Road. Traffic counts indicated that outbound left-turns are being made at the driveway. The driveway has a painted right-turn arrow and a small pork chop island to limit the left-turn outs. It is not recommended to modify the island because it will impact the school bus turning paths exiting the lot. Additional "No Left-Turn" signage should be added and reminders sent to parents that this movement is not allowed.

Thomas Street at Belmont Avenue

The intersection will continue to operate well as a two-way stop intersection. An existing crossing guard will still stop traffic at the pedestrian crosswalks for students crossing.

South Parking Lot Access

The South Parking Lot will be expanded from 27 to 66 parking spaces and be restricted to staff, visitor, and accessible parking. It will be accessed from a driveway about 25 feet south of the existing driveway with an east-west orientation instead of north-south to incorporate a fire lane around the south side of the building. School bus and parents will still use Belmont Avenue to drop-off students. School buses may use the parking lot for after school activities outside the peak arrival/dismissal periods.

PARKING

The existing school on-site parking supply provides a total of 102 parking spaces including four accessible spaces in the two on-site parking lots. With the proposed changes to the south parking lot, there will be a net increase of 39 spaces for a total of 141 spaces including five accessible spaces.

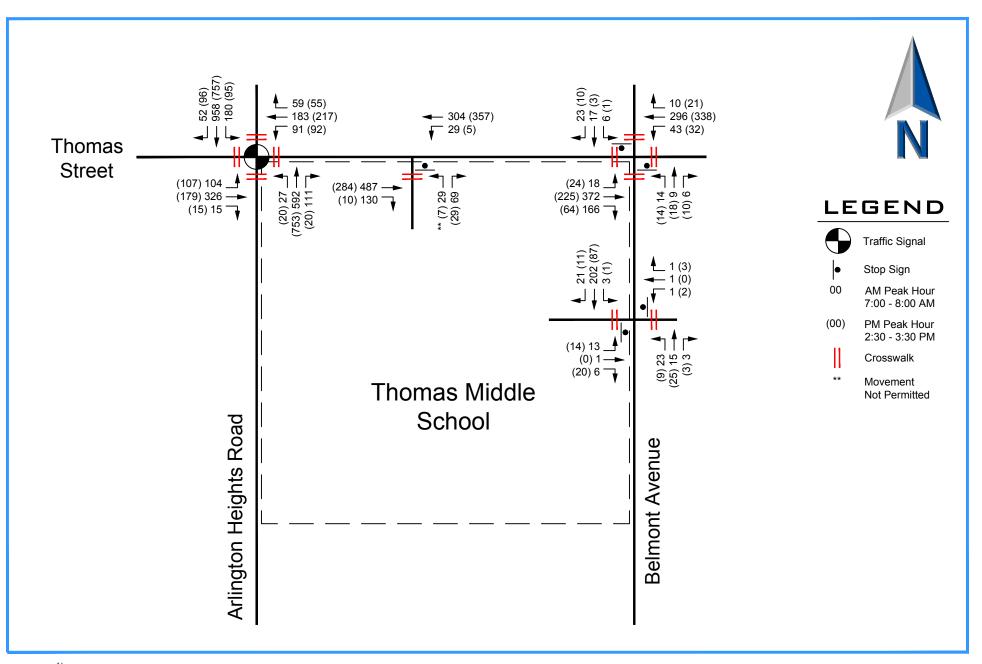
The Village of Arlington Heights Zoning Ordinance requires elementary schools to provide two parking spaces per each employee (135 staff) and one per classroom (44 rooms) for a total of 314 (270+44) spaces. A parking variation of 173 spaces (314-141) would be required.

National parking data is available from the Institute of Transportation Engineers (ITE) in their publication <u>Parking Generation</u>, 4th Edition for middle schools (Land Use Code 522). The peak demand was 0.09 spaces per student (1,030 students) or 93 spaces which is well under the 141 spaces proposed.

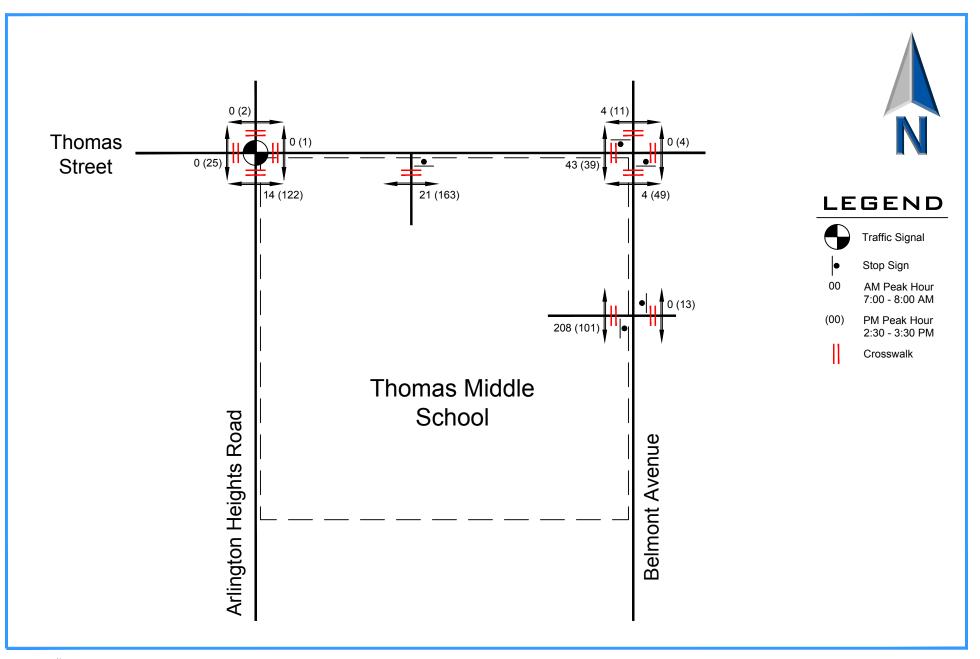

Parking counts were conducted on Wednesday May 3, 2016 which found 102 vehicles parked on-site including staff and visitors. Two of the 102 vehicles were maintenance vehicles parked in the school loading area. Minimal on-street parking near the school was observed outside of the arrival/dismissal periods (2-3 vehicles). It was also observed that two vehicles were parked in the small park district lot east of the school. The existing school parking demand is 107 vehicles. The school currently has 127 staff members but they are not all present on-site at the same time.

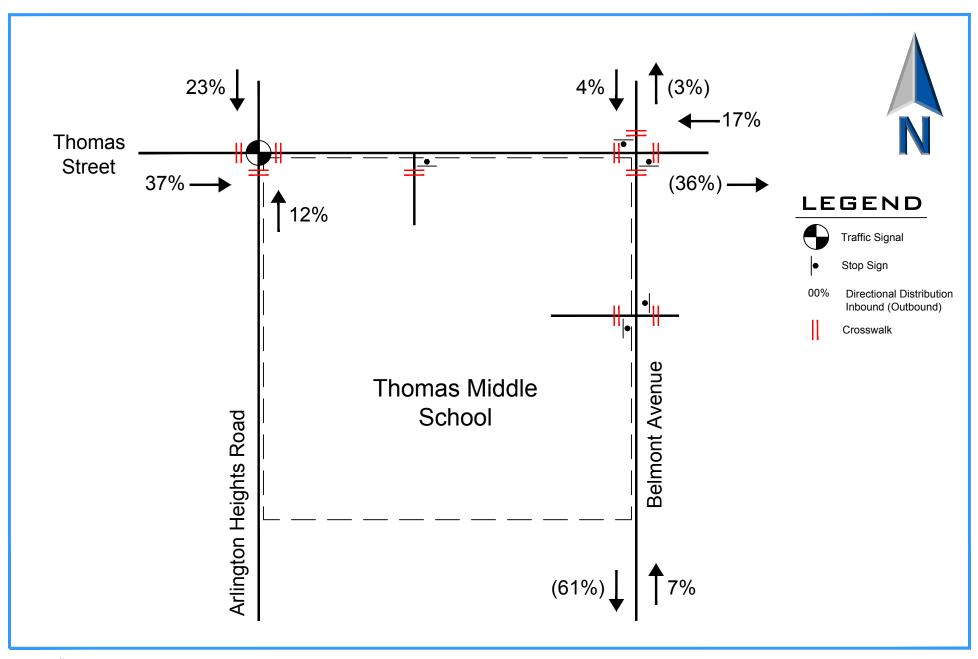
Projected parking demand was estimated based on the existing demand 107 vehicles increased 8.4% in proportion to the increase in students resulting in a total demand of 116 vehicles, which is less than the proposed supply of 141 spaces. Parking for special events at the school can be accommodated by a combination of the off-street parking and on-street parking by the school on Belmont Avenue.

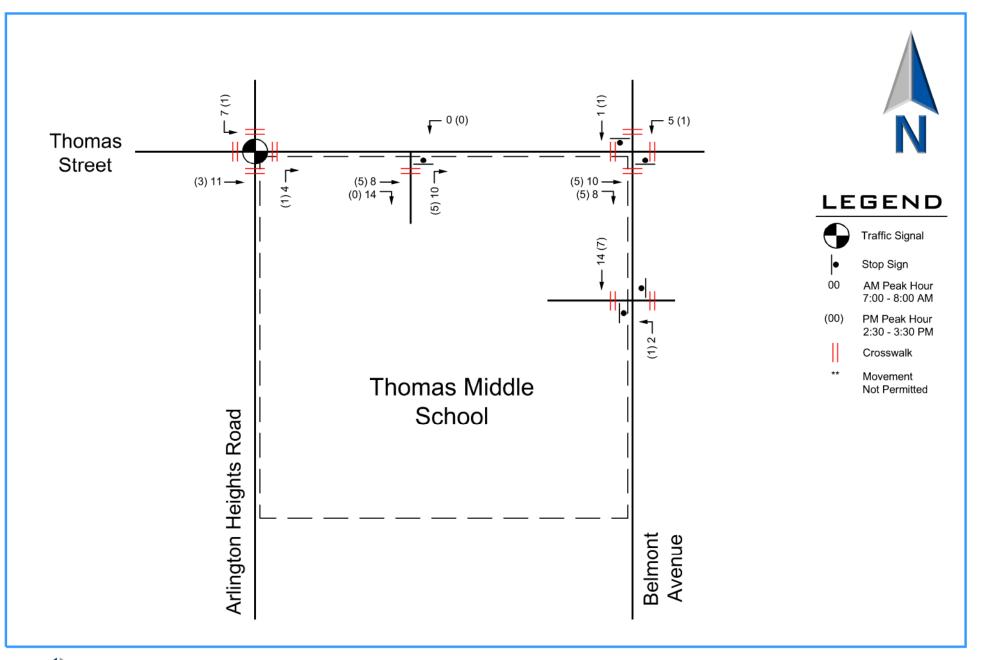
SUMMARY

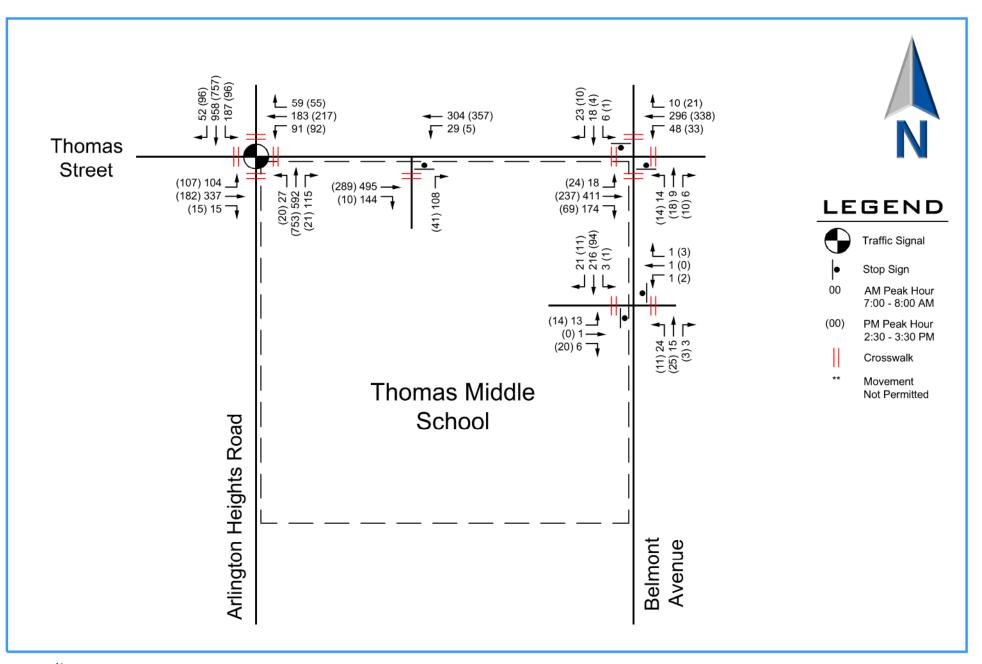

This report summarizes the results of traffic and parking study for the expansion of Thomas Middle School in Arlington Heights, Illinois. The findings of the study area:

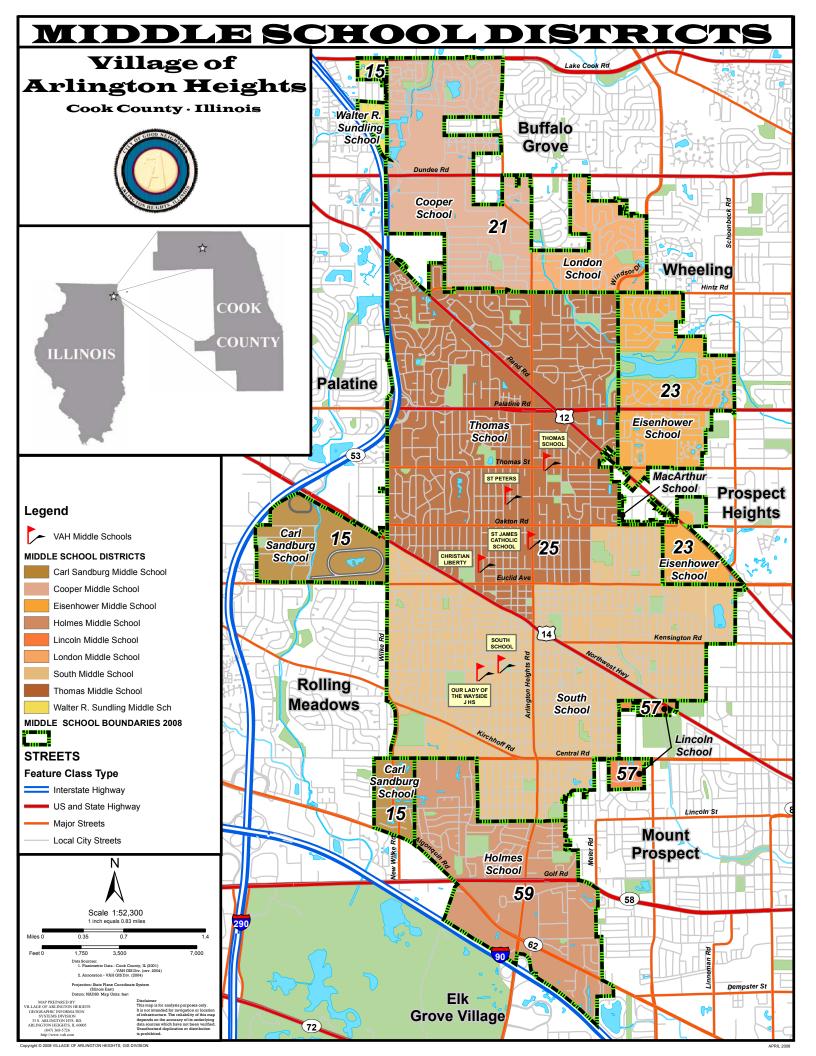
- The volume of additional school traffic generated by the school expansion is low due to small increase in students. The net change in area traffic volumes is nominal.
- The existing West Lot exit drive will require additional signage to reinforce the current left-turn prohibition.
- Parking for the school provides 141 on-site parking spaces and exceeds the school's projected needs. It will require a parking variation of 173 spaces from the village zoning code requirements of 314 spaces.

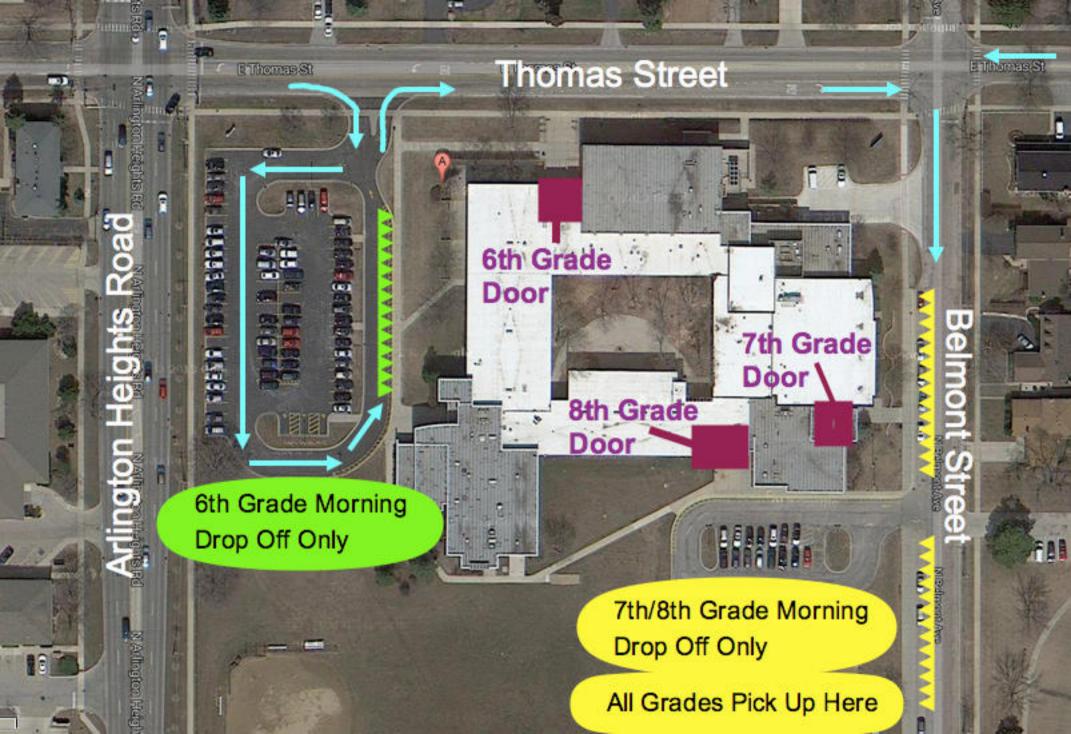



Site Location and Area Roadways









Traffic and Parking Study Appendix

- School Boundaries and Loading Areas
- 2016 Existing Traffic Counts
- 2016 Existing Capacity Analyses
- Total Capacity Analyses

Intersection Counts

Arlington Heights Road at Thomas Street

	Arlingto	on Heights	School	District	25															Arlington	Heights, I	llinois	
	Arlin	ngton Hts I	Road	T	homas Stre	et	Arlir	ngton Hts	Road	TI	nomas Str	eet											
	S	outhboun	d		Westbound	ł	1	Northboun	d		Eastbound	d	15	60	Peak		Pedestric	an Counts			Biker	Counts	
Begin	Right		Left	Right		Left	Right		Left	Right		Left	Minute	Minute	Hour	North	East	South	West	North	East	South	West
Time	Turn	Through	Turn	Turn	Through	Turn	Turn	Through	Turn	Turn	Through	Turn	Totals	Totals	Factor	Leg	Leg	Leg	Leg	Leg	Leg	Leg	Leg
	Tuesda	y May 10,	2016																				
7:00 AM	9	221	58	21	41	11	25	141	8	3	104	14	656	2690	0.95	0	0	0	0	0	0	0	0
7:15 AM	12	227	39	16	49	26	23	154	1	2	87	28	664	2604	0.92	0	0	8	0	0	0	0	0
7:30 AM	14	248	63	15	54	23	47	138	11	2	72	24	<i>7</i> 11	2502	0.88	0	0	6	0	0	0	0	0
7:45 AM	1 <i>7</i>	262	20	7	31	31	16	159	7	8	63	38	659			0	0	0	0	0	0	0	0
8:00 AM	16	266	23	12	21	1 <i>7</i>	15	135	7	4	22	32	570			0	0	0	0	0	0	0	0
8:15 AM	16	205	11	13	67	21	7	144	7	3	36	32	562			0	0	0	0	0	0	0	0
Total	84	1429	214	84	263	129	133	871	41	22	384	168				0	0	14	0	0	0	0	0
7:00-8:00 AM	52	958	180	59	175	91	111	592	27	15	326	104	2690			0	0	14	0	0	0	0	0
	Tuesda	y May 10,	2016																				
2:00 PM	14	173	1 <i>7</i>	15	33	1 <i>7</i>	21	139	6	0	26	19	480	2132	0.91	0	0	0	0	0	0	0	0
2:15 PM	23	189	16	10	20	22	18	163	5	2	26	15	509	2275	0.91	0	0	0	1	0	0	0	0
2:30 PM	22	175	32	15	26	16	22	201	3	1	1 <i>7</i>	27	557	2377	0.95	0	0	0	0	0	0	0	0
2:45 PM	18	195	23	6	64	28	11	171	5	5	36	24	586			0	0	109	22	0	0	0	0
3:00 PM	16	182	21	20	74	30	20	185	8	5	35	27	623			1	0	9	1	0	1	0	0
3:15 PM	40	205	19	14	39	18	16	196	4	4	27	29	611			1	1	4	2	0	0	0	0
Total	133	1119	128	80	256	131	108	1055	31	1 <i>7</i>	167	141				2	1	122	26	0	1	0	0
2:30-3:30 PM	96	757	95	55	203	92	69	753	20	15	115	107	2377			2	1	122	25	0	1	0	0

Intersection Counts Thomas Street at School Lot Access

	Arlington	Heights	School	District	25			Arlingto	n Heigh	nts, Illinois
	Thomas Westbo		Lot A Northl		_	as Street bound	15	60	Peak	Pedestrian Counts
Begin		Left	Right	Left	Right		Minute	Minute	Hour	South
Time	Through	Turn	Turn	Turn	Turn	Through	Totals	Totals	Factor	Leg
	Tuesday N	Λαy 10,	2016							
7:00 AM	75	4	4	4	19	165	271	1025	0.74	2
7:15 AM	82	7	7	7	23	120	246	874	0.63	4
7:30 AM	79	16	58	18	84	91	346	754	0.54	13
7:45 AM	68	2	0	0	4	88	162			2
8:00 AM	55	0	0	0	0	65	120			0
8:15 AM	63	0	0	0	0	63	126			0
Total	422	29	69	29	130	592				21
7:00-8:00 AM	304	29	69	29	130	464	1025			21
	Tuesday N	Лау 10,	2016							
2:00 PM	65	0	1	0	0	56	122	563	0.73	0
2:15 PM	51	3	0	0	3	61	118	661	0.75	0
2:30 PM	60	4	0	0	3	62	129	684	0.78	1
2:45 PM	99	1	13	2	1	<i>7</i> 8	194			150
3:00 PM	125	0	13	2	2	<i>7</i> 8	220			7
3:15 PM	73	0	3	3	4	58	141			5
Total	473	8	30	7	13	393				163
2:30-3:30 PM	357	5	29	7	10	276	684			163

	Arlingt	on Heights	School	District	25															Arlington	Heights, I	llinois	
		mont Ave			homas Stre Westbound			mont Ave Northboun			nomas Stre Eastbound		15	60	Peak		Pedestric	an Counts			Biker	Counts	
Begin	Right		Left	Right		Left	Right		Left	Right		Left	Minute	Minute	Hour	North	East	South	West	North	East	South	West
Time	Turn	Through	Turn	Turn	Through	Turn	Turn	Through	Turn	Turn	Through	Turn	Totals	Totals	Factor	Leg	Leg	Leg	Leg	Leg	Leg	Leg	Leg
	Tuesda	y May 10,	2016																				
7:00 AM	1	5	0	2	59	13	5	5	14	61	102	0	267	1005	0.79	0	0	0	0	0	0	0	0
7:15 AM	5	1	0	3	87	11	1	3	5	44	97	0	257	854	0.67	1	0	1	3	0	0	0	0
7:30 AM	15	12	4	2	85	29	4	1	5	76	66	18	31 <i>7</i>	705	0.56	3	0	2	39	0	0	0	0
7:45 AM	3	3	1	2	55	2	0	2	2	33	61	0	164			0	0	1	1	0	0	0	0
8:00 AM	0	1	1	3	45	1	1	0	2	13	49	0	116			0	0	0	0	0	0	0	0
8:15 AM	1	0	0	1	51	0	0	0	0	9	46	0	108			0	0	1	0	0	0	0	0
Total	25	22	6	13	382	56	11	11	28	236	421	18				4	0	5	43	0	0	0	0
7:00-8:00 AM	23	1 <i>7</i>	6	10	272	43	6	6	14	166	273	18	854			4	0	4	43	0	0	0	0
	Tuesda	y May 10,	2016																				
2:00 PM	0	0	1	0	78	2	2	2	3	4	56	0	148	633	0.73	0	0	1	0	0	0	0	0
2:15 PM	1	0	0	3	53	5	1	0	0	9	51	0	123	740	0.73	0	0	0	0	0	0	0	0
2:30 PM	1	0	0	3	63	8	2	0	2	12	49	4	144	761	0.75	0	0	0	0	0	0	0	0
2:45 PM	6	2	1	5	85	10	6	3	9	26	52	13	218			8	0	9	37	0	0	0	0
3:00 PM	2	1	0	10	125	9	1	7	3	1 <i>7</i>	73	7	255			3	2	1	2	0	0	0	0
3:15 PM	0	2	0	6	65	7	3	2	3	18	36	2	144			0	2	39	0	0	0	0	0
Total	10	5	2	27	469	41	15	14	20	86	31 <i>7</i>	26				11	4	50	39	0	0	0	0
2:30-3:30 PM	10	3	1	21	326	32	10	10	14	64	225	24	740			11	4	49	39	0	0	0	0

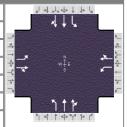
Intersection Counts Belmont Avenue at South Parking Lot

	Arlington Heights School District 25 Belmont Avenue Park District Lot Belmont Avenue South													Arlington	Heights, I	llinois			
	-	mont Avei			rk District Westbound		_	mont Ave Northboun		l l	oth Parking Eastbound		15	60	Peak	Pedestri	an Counts	Biker	Counts
Begin	Right		Left	Right		Left	Right		Left	Right		Left	Minute	Minute	Hour	East	West	North	South
Time	Turn	Through	Turn	Turn	Through	Turn	Turn	Through	Turn	Turn	Through	Turn	Totals	Totals	Factor	Leg	Leg	Leg	Leg
	Thursd	ay May 12	, 2016																
7:00 AM	10	60	1	0	0	0	0	10	4	1	0	5	91	343	0.78	0	0	0	0
7:15 AM	11	49	3	0	0	0	0	2	11	2	0	5	83	268	0.61	0	89	0	1
7:30 AM	7	80	0	1	1	0	2	9	6	1	1	2	110	197	0.45	0	119	0	2
7:45 AM	3	38	0	0	0	1	1	3	5	2	0	6	59			0	0	0	0
8:00 AM	0	13	0	0	0	0	0	1	1	1	0	0	16			0	0	0	0
8:15 AM	0	8	0	0	0	0	0	2	1	1	0	0	12			0	0	0	0
Total	31	248	4	1	1	1	3	27	28	8	1	18				0	208	0	3
7:00-8:00 AM	21	180	3	1	1	1	3	15	23	6	1	13	268			0	208	0	3
	Thursd	ay May 12	, 2016																
2:00 PM	2	5	0	0	0	0	0	1	0	0	0	1	9	134	0.51	1	0	0	0
2:15 PM	0	12	0	0	0	0	0	3	2	0	0	0	1 <i>7</i>	167	0.63	0	0	0	0
2:30 PM	4	18	1	0	0	0	2	4	5	3	0	5	42	191	0.72	0	0	0	0
2:45 PM	3	31	0	2	0	2	1	10	0	12	0	5	66			10	92	6	0
3:00 PM	4	18	0	1	0	0	0	8	2	5	0	4	42			1	5	0	0
3:15 PM	2	21	1	1	0	0	0	7	4	2	0	3	41			2	4	1	0
Total	15	105	2	4	0	2	3	33	13	22	0	18				14	101	7	0
2:30-3:30 PM	11	79	1	3	0	2	3	25	9	20	0	14	167			13	101	7	0

HCS 2010 Signalized Intersection Input Data General Information Intersection Information Eriksson Engineering Duration, h 0.25 Agency Analyst AJB Analysis Date Jul 25, 2016 Area Type Other PHF 0.95 Jurisdiction Arlington Heights Time Period 7:00 - 8:00 AM **Urban Street** Arlington Heights Road Analysis Year 2016 **Analysis Period** 1> 7:00 Arlington Heights/Thomas File Name Arl Hts 700 Exst.xus Intersection **Project Description Existing Conditions** WB **Demand Information** EB NB SB Approach Movement L R L R L R L R Demand (v), veh/h 104 326 15 91 175 59 27 592 111 180 958 52 **J** Signal Information ധ Cycle, s 120.0 Reference Phase 2 7 Ä Offset, s 0 Reference Point -Begin Green 1.8 3.2 61.4 6.7 0.8 25.1 Uncoordinated No Simult. Gap E/W On Yellow 3.0 4.5 3.0 4.5 3.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 0.0 0.0 1.5 0.0 0.0 1.5 **Traffic Information** EΒ WB NB SB Approach Movement Т R L Τ R L R L Τ L Т R Demand (v), veh/h 104 326 15 91 175 59 27 592 111 180 958 52 Initial Queue (Qb), veh/h 0 0 0 0 0 0 0 0 0 0 0 0 Base Saturation Flow Rate (so), veh/h 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Parking (Nm), man/h None None None None Heavy Vehicles (PHV), % 0 0 0 0 0 0 0 0 Ped / Bike / RTOR, /h 0 0 15 0 0 15 14 0 15 0 0 15 Buses (Nb), buses/h 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 Arrival Type (AT) 3 Upstream Filtering (1) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Lane Width (W), ft 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 140 100 100 Turn Bay Length, ft 0 200 0 0 0 Grade (Pg), % 0 0 0 0 Speed Limit, mi/h 25 25 25 30 30 30 35 35 35 35 35 35 **Phase Information** WBL WBT SBL **EBL EBT NBL NBT** SBT 34.8 Maximum Green (Gmax) or Phase Split, s 13.2 34.8 13.2 13.2 58.8 13.2 58.8 3.0 Yellow Change Interval (Y), s 4.5 3.0 4.5 3.0 4.5 3.0 4.5 Red Clearance Interval (Rc), s 0.0 1.5 0.0 1.5 0.0 1.5 0.0 1.5 Minimum Green (Gmin), s 3 3 3 3 3 3 3 3 Start-Up Lost Time (It), s 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Extension of Effective Green (e), s 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Passage (PT), s 3.0 5.0 3.0 5.0 3.0 7.0 3.0 7.0 Recall Mode Off Off Off Off Off Min Off Min **Dual Entry** No Yes No Yes No Yes Nο Yes Walk (Walk), s 0.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0 Pedestrian Clearance Time (PC), s 14.0 18.0 0.0 11.0 15.0 0.0 0.0 0.0 **Multimodal Information** EΒ WB NB SB 85th % Speed / Rest in Walk / Corner Radius 0 0 Nο 25 0 No 25 No 25 0 Nο 25 9.0 9.0 0 9.0 12 0 9.0 0 Walkway / Crosswalk Width / Length, ft 12 0 12 12 Street Width / Island / Curb 0 0 0 0 0 0 0 No No 0 No No Width Outside / Bike Lane / Shoulder, ft 12 5.0 2.0 12 5.0 2.0 12 5.0 2.0 12 5.0 2.0 Pedestrian Signal / Occupied Parking No 0.50 0.50 No 0.50

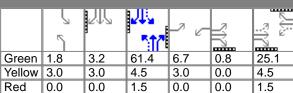
No

Generated: 7/25/2016 4:36:16 PM


0.50

No

HCS 2010 Signalized Intersection Results Summary 可可可的 **General Information Intersection Information** Eriksson Engineering Duration, h 0.25 Agency Analyst AJB Analysis Date Jul 25, 2016 Area Type Other PHF 0.95 Jurisdiction Arlington Heights Time Period 7:00 - 8:00 AM **Urban Street** Arlington Heights Road Analysis Year 2016 **Analysis Period** 1> 7:00 Arlington Heights/Thomas File Name Arl Hts 700 Exst.xus Intersection **Project Description Existing Conditions** WB **Demand Information** EB NB SB Approach Movement L R L R L R L R 958 Demand (v), veh/h 104 326 15 91 175 59 27 592 111 180 52 14. **Signal Information** 닜 Cycle, s 120.0 Reference Phase 2 7 Offset, s 0 Reference Point -Begin Green 1.8 3.2 61.4 6.7 0.8 25.1 Uncoordinated No Simult. Gap E/W On Yellow 3.0 3.0 4.5 3.0 0.0 4.5 Force Mode Fixed Simult. Gap N/S On Red 0.0 0.0 1.5 0.0 0.0 1.5 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 4 3 8 2 7 5 1 6 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 10.5 31.9 9.7 31.1 4.8 67.4 11.1 73.6 Change Period, (Y+Rc), s 6.0 6.0 3.0 6.0 3.0 3.0 3.0 6.0 Max Allow Headway (MAH), s 4.3 6.2 4.2 6.2 4.1 0.0 4.1 0.0 Queue Clearance Time (g_s), s 7.6 22.7 6.9 15.6 2.9 7.7 Green Extension Time (g_e), s 0.1 3.1 0.1 4.2 0.0 0.0 0.4 0.0 Phase Call Probability 0.97 1.00 0.96 1.00 0.61 1.00 1.00 0.58 0.21 0.03 Max Out Probability 1.00 0.00 WB SB **Movement Group Results** EΒ NB Approach Movement L Т R L Т R Т R L Т L R **Assigned Movement** 7 4 14 3 8 18 5 2 12 1 6 16 28 Adjusted Flow Rate (v), veh/h 109 0 96 231 371 353 189 527 520 Adjusted Saturation Flow Rate (s), veh/h/ln 1810 1810 1834 1810 1900 1799 1810 1875 0 1900 5.6 0.9 14.2 14.3 5.7 20.1 Queue Service Time (g_s), s 0.0 4.9 13.6 20.1 Cycle Queue Clearance Time (q c), s 5.6 0.0 4.9 13.6 0.9 14.2 14.3 5.7 20.1 20.1 Green Ratio (g/C) 0.27 0.26 0.21 0.53 0.51 0.51 0.60 0.56 0.56 Capacity (c), veh/h 284 189 383 295 972 920 472 1070 1056 Volume-to-Capacity Ratio (X) 0.385 0.000 0.508 0.602 0.096 0.382 0.383 0.401 0.493 0.493 Back of Queue (Q), ft/ln (95 th percentile) 116.3 103.2 268.2 16.9 263.5 253.5 101.8 343 339.5 0 Back of Queue (Q), veh/ln (95 th percentile) 4.7 0.0 4.1 10.7 0.7 10.5 10.1 4.1 13.7 13.6 Queue Storage Ratio (RQ) (95 th percentile) 0.83 0.00 0.52 0.00 0.17 0.00 0.00 1.02 0.00 0.00 Uniform Delay (d 1), s/veh 34.8 36.4 42.9 14.8 17.8 17.8 12.5 15.8 15.8 Incremental Delay (d 2), s/veh 0.9 0.0 2.1 3.2 0.1 1.1 1.2 0.6 1.6 1.6 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 35.6 38.6 46.2 14.9 18.9 19.0 13.0 17.5 17.5 Level of Service (LOS) D D D В В В В В В 52.3 43.9 В 16.8 Approach Delay, s/veh / LOS D D 18.8 В Intersection Delay, s/veh / LOS 26.3 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.9 С 2.9 2.3 С В 2.3 В Bicycle LOS Score / LOS 1.2 Α 1.0 Α 1.1 Α 1.5 Α


HCS 2010 Signalized Intersection Intermediate Values

General Information				Intersection Info	rmation
Agency	Eriksson Engineering			Duration, h	0.25
Analyst	AJB	Analysis Date	Jul 25, 2016	Area Type	Other
Jurisdiction	Arlington Heights	Time Period	7:00 - 8:00 AM	PHF	0.95
Urban Street	Arlington Heights Road	Analysis Year	2016	Analysis Period	1> 7:00
Intersection	Arlington Heights/Thomas	File Name	Arl Hts 700 Exst.xu	JS	
Project Description	Existing Conditions				

Demand Information		EB			WB			NB			SB	
Approach Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h	104	326	15	91	175	59	27	592	111	180	958	52

Signal Informa	tion		
Cycle, s	120.0	Reference Phase	2
Offset, s	0	Reference Point	Begin
Uncoordinated	No	Simult. Gap E/W	On
Force Mode	Fixed	Simult. Gap N/S	On

	EB			WB			NB			SB	
L	Т	R	L	Т	R	L	Т	R	L	Т	R
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
0.952	0.000		0.952	0.000		0.952	0.000		0.952	0.000	
	1.000			0.965			0.947			0.987	
1.000			1.000			1.000			0.999		
		1.000			1.000			0.986			1.000
1810	1900		1810	1465		1810	3184		1810	3634	
0.06	0.22	0.00	0.06	0.21	0.21	0.02	0.51	0.51	0.07	0.56	0.56
0.11			0.11	0.23		0.11	0.50	0.50	0.11	0.50	0.50
	1.000 1.000 1.000 1.000 1.000 0.952 1.000 1810 0.06	L T 1.000 0.952 0.000 1.000 1.000 1.000 0.952 0.000 1.000 0.000 0.022	L T R 1.000	L T R L 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.952 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.00	L T R L T 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.952 0.000 0.952 0.000 0.965 1.000 1.000 1.000 1.000 1810 1900 1810 1465 0.06 0.22 0.00 0.06 0.21	L T R L T R 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.952 0.000 0.952 0.000 0.965 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	L T R L T R L 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.952 0.000 0.952 0.000 0.952 0.000 0.952 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000<	L T R L T R L T 1.000	L T R L T R L T R 1.000	L T R L T R L T R L T R L T R L T R L T R L T R L T R L 1.000	L T R L T

Simple Timing / Mayamant Crayer	- EDI	EDT/D	WDI	MDT/D	NDI	NDT/D	CDI	CDT/D
Signal Timing / Movement Groups	EBL	EBT/R	WBL	WBT/R	NBL	NBT/R	SBL	SBT/R
Lost Time (t _L)	3.0	6.0	3.0	6.0	3.0	6.0	3.0	6.0
Green Ratio (g/C)	0.27	0.22	0.26	0.21	0.53	0.51	0.60	0.56
Permitted Saturation Flow Rate (s _ρ), veh/h/ln	1168	0	1054	0	547	0	741	0
Shared Saturation Flow Rate (ssh), veh/h/ln								
Permitted Effective Green Time (g_p) , s	25.1	0.0	25.1	0.0	61.4	0.0	63.4	0.0
Permitted Service Time (gu), s	11.4	0.0	3.1	0.0	45.5	0.0	47.1	0.0
Permitted Queue Service Time (gps), s	1.4		2.2		0.9		5.6	
Time to First Blockage (gt), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Queue Service Time Before Blockage (gfs), s								
Protected Right Saturation Flow (s _R), veh/h/ln								
Protected Right Effective Green Time (g _R), s								
Multimodal	Е	В	V	VB	N	IB	S	В
Pedestrian F _w / F _v	2.107	0.02	2.107	0.02	1.557	0.02	1.557	0.02
Pedestrian F _s / F _{delay}	0.000	0.145	0.000	0.145	0.000	0.107	0.000	0.098
Pedestrian Mcorner / Mcw			4087.61		4069.71			
Bicycle c_b / d_b	431.03	36.93	417.90	37.55	1022.92	14.32	1126.53	11.44

-3.64

0.75

Bicycle Fw / Fv

0.54

-3.64

0.62

-3.64

1.02

-3.64

--- Messages ---

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ---

Copyright © 2016 University of Florida, All Rights Reserved.

HCS 2010™ Streets Version 6.80

Generated: 7/25/2016 4:36:16 PM

HCS 2010 Signalized Intersection Input Data General Information Intersection Information Eriksson Engineering Duration, h 0.25 Agency Analyst AJB Analysis Date Jul 25, 2016 Area Type Other 2:30 - 3:30 PM PHF 0.95 Jurisdiction Arlington Heights Time Period **Urban Street** Arlington Heights Road Analysis Year 2016 **Analysis Period** 1> 2:30 Arlington Heights/Thomas File Name Arl Hts 230 Exst.xus Intersection **Project Description Existing Conditions** WB **Demand Information** EB NB SB Approach Movement L R L R L R L R 55 Demand (v), veh/h 107 115 15 92 203 20 753 20 95 757 96 **J Signal Information** ധ Cycle, s 115.0 Reference Phase 2 51 Ä Offset, s 0 Reference Point -Begin Green 1.5 0.2 61.9 6.6 0.9 22.9 Uncoordinated No Simult. Gap E/W On Yellow 3.0 4.5 3.0 3.0 0.0 4.5 Force Mode Fixed Simult. Gap N/S On Red 0.0 0.0 1.5 0.0 0.0 1.5 **Traffic Information** EΒ WB NB SB Approach Movement Т R L Т R L R L Т L Т R Demand (v), veh/h 107 115 15 203 55 20 753 20 757 96 Initial Queue (Qb), veh/h 0 0 0 0 0 0 0 0 0 0 0 0 Base Saturation Flow Rate (so), veh/h 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Parking (Nm), man/h None None None None Heavy Vehicles (PHV), % 0 0 0 0 0 0 0 0 Ped / Bike / RTOR, /h 25 0 15 1 1 15 122 0 15 2 0 15 Buses (Nb), buses/h 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 Arrival Type (AT) 3 1.00 Upstream Filtering (1) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Lane Width (W), ft 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 140 100 100 Turn Bay Length, ft 0 200 0 0 0 Grade (Pg), % 0 0 0 0 Speed Limit, mi/h 25 25 25 30 30 30 35 35 35 35 35 35 **Phase Information** WBL WBT SBL **EBL EBT NBL NBT** SBT Maximum Green (Gmax) or Phase Split, s 12.7 34.5 12.7 34.5 12.7 55.1 12.7 55.1 Yellow Change Interval (Y), s 3.0 4.5 3.0 4.5 3.0 4.5 3.0 4.5 Red Clearance Interval (Rc), s 0.0 1.5 0.0 1.5 0.0 1.5 0.0 1.5 Minimum Green (Gmin), s 3 3 3 3 3 3 3 3 Start-Up Lost Time (It), s 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Extension of Effective Green (e), s 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Passage (PT), s 3.0 5.0 3.0 5.0 3.0 7.0 3.0 7.0 Recall Mode Off Off Off Off Off Min Off Min **Dual Entry** No Yes No Yes No Yes Nο Yes Walk (Walk), s 0.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0 Pedestrian Clearance Time (PC), s 14.0 18.0 0.0 11.0 15.0 0.0 0.0 0.0 **Multimodal Information** EΒ WB NB SB 85th % Speed / Rest in Walk / Corner Radius 0 0 Nο 25 0 No 25 No 25 0 Nο 25 9.0 9.0 0 9.0 12 0 9.0 0 Walkway / Crosswalk Width / Length, ft 12 0 12 12 Street Width / Island / Curb 0 0 0 0 0 0 0 0 No No No No Width Outside / Bike Lane / Shoulder, ft 12 5.0 2.0 12 5.0 2.0 12 5.0 2.0 12 5.0 2.0

Pedestrian Signal / Occupied Parking

No

0.50

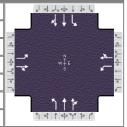
No

0.50

No

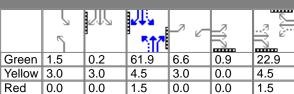
Generated: 7/25/2016 4:36:37 PM

0.50


No

0.50

HCS 2010 Signalized Intersection Results Summary General Information Intersection Information Eriksson Engineering Duration, h 0.25 Agency Analyst AJB Analysis Date Jul 25, 2016 Area Type Other 2:30 - 3:30 PM PHF 0.95 Jurisdiction Arlington Heights Time Period **Urban Street** Arlington Heights Road Analysis Year 2016 **Analysis Period** 1> 2:30 Arlington Heights/Thomas File Name Arl Hts 230 Exst.xus Intersection **Project Description Existing Conditions Demand Information** EB **WB** NB SB Approach Movement L R L R L R L R 55 Demand (v), veh/h 107 115 15 92 203 20 753 20 95 757 96 14. **Signal Information** ധ Cycle, s 115.0 Reference Phase 2 51 Ä Offset, s 0 Reference Point Begin Green 1.5 0.2 61.9 6.6 0.9 22.9 Uncoordinated No Simult. Gap E/W On 3.0 Yellow 3.0 3.0 4.5 0.0 4.5 Force Mode Fixed Simult. Gap N/S On Red 0.0 0.0 1.5 0.0 0.0 1.5 **Timer Results EBL EBT WBL WBT** NBL **NBT** SBL SBT **Assigned Phase** 4 3 8 2 7 5 1 6 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 10.5 29.8 9.6 28.9 4.5 67.9 7.7 71.1 Change Period, (Y+Rc), s 6.0 6.0 3.0 6.0 3.0 3.0 3.0 6.0 Max Allow Headway (MAH), s 4.3 6.2 4.2 6.2 4.1 0.0 4.1 0.0 Queue Clearance Time (g_s), s 7.6 8.2 6.8 16.9 2.6 4.7 Green Extension Time (g_e), s 0.1 3.0 0.1 2.4 0.0 0.0 0.2 0.0 Phase Call Probability 0.97 1.00 0.95 1.00 0.49 0.96 1.00 0.01 Max Out Probability 1.00 0.15 0.00 0.00 WB NB SB **Movement Group Results** EΒ Approach Movement L Т R L Т R Т R L Т L R **Assigned Movement** 7 4 14 3 8 18 5 2 12 1 6 16 Adjusted Flow Rate (v), veh/h 113 0 97 256 21 400 398 100 449 433 Adjusted Saturation Flow Rate (s), veh/h/ln 1810 1810 1840 1810 1900 1892 1810 1900 1834 0 5.6 4.8 14.9 0.6 14.2 14.2 2.7 Queue Service Time (g_s), s 0.0 15.4 15.4 Cycle Queue Clearance Time (q c), s 5.6 0.0 4.8 14.9 0.6 14.2 14.2 2.7 15.4 15.4 Green Ratio (g/C) 0.26 0.26 0.20 0.55 0.54 0.54 0.60 0.57 0.57 Capacity (c), veh/h 260 341 367 351 1023 1018 424 1076 1039 Volume-to-Capacity Ratio (X) 0.433 0.000 0.284 0.697 0.060 0.391 0.391 0.236 0.417 0.417 Back of Queue (Q), ft/ln (95 th percentile) 116 97.8 292.4 11 257.6 256.8 47.9 272.4 265.3 0 Back of Queue (Q), veh/ln (95 th percentile) 4.6 0.0 3.9 11.7 0.4 10.3 10.3 1.9 10.9 10.6 Queue Storage Ratio (RQ) (95 th percentile) 0.83 0.00 0.49 0.00 0.11 0.00 0.00 0.48 0.00 0.00 Uniform Delay (d 1), s/veh 34.3 33.8 42.8 12.6 15.5 15.5 11.2 14.2 14.2 Incremental Delay (d 2), s/veh 1.1 0.0 0.5 5.3 0.1 1.1 1.1 0.3 1.2 1.2 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 35.4 34.3 48.1 12.7 16.7 16.7 11.5 15.3 15.4 Level of Service (LOS) D С D В В В В В В 37.5 44.3 В 15.0 В Approach Delay, s/veh / LOS D D 16.6 Intersection Delay, s/veh / LOS 22.1 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.9 С 2.9 2.3 С В 2.3 В Bicycle LOS Score / LOS 0.9 Α 1.1 Α 1.2 Α 1.3 Α


HCS 2010 Signalized Intersection Intermediate Values

General Information	Intersection Information									
Agency	Eriksson Engineering	Eriksson Engineering								
Analyst	AJB	Analysis Date	Jul 25, 2016	Area Type	Other					
Jurisdiction	Arlington Heights	Time Period	2:30 - 3:30 PM	PHF	0.95					
Urban Street	Arlington Heights Road	Analysis Year	2016	Analysis Period	1> 2:30					
Intersection	Arlington Heights/Thomas	File Name	Arl Hts 230 Exst.xus							
Project Description	Existing Conditions									

Demand Information	EB		WB				NB		SB			
Approach Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h	107	115	15	92	203	55	20	753	20	95	757	96

Signal Information											
Cycle, s	115.0	Reference Phase	2								
Offset, s	0	Reference Point	Begin								
Uncoordinated	No	Simult. Gap E/W	On								
Force Mode	Fixed	Simult. Gap N/S	On								

		EB			WB			NB				
Saturation Flow / Delay	L	T	R	L	Т	R	L	Т	R	L	Т	R
Lane Width Adjustment Factor (fw)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Heavy Vehicle Adjustment Factor (fhv)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Approach Grade Adjustment Factor (fg)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Parking Activity Adjustment Factor (f _p)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Bus Blockage Adjustment Factor (fbb)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Area Type Adjustment Factor (fa)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Lane Utilization Adjustment Factor (fLU)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Left-Turn Adjustment Factor (fLT)	0.952	0.000		0.952	0.000		0.952	0.000		0.952	0.000	
Right-Turn Adjustment Factor (frt)		1.000			0.969			0.996			0.965	
Left-Turn Pedestrian Adjustment Factor (fLpb)	0.999			0.973			1.000			0.993		
Right-Turn Ped-Bike Adjustment Factor (fRpb)			1.000			0.985			0.887			0.998
Movement Saturation Flow Rate (s), veh/h	1810	1900		1810	1537		1810	3767		1810	3373	
Proportion of Vehicles Arriving on Green (P)	0.06	0.21	0.00	0.06	0.20	0.20	0.01	0.54	0.54	0.04	0.57	0.57
Incremental Delay Factor (k)				0.11	0.24		0.11	0.50	0.50	0.11	0.50	0.50

Signal Timing / Movement Groups	EBL	EBT/R	WBL	WBT/R	NBL	NBT/R	SBL	SBT/R
Lost Time (tL)	3.0	6.0	3.0	6.0	3.0	6.0	3.0	6.0
Green Ratio (g/C)	0.26	0.21	0.26	0.20	0.55	0.54	0.60	0.57
Permitted Saturation Flow Rate (sp), veh/h/ln	1142	0	1291	0	639	0	692	0
Shared Saturation Flow Rate (ssh), veh/h/ln								
Permitted Effective Green Time (<i>g_p</i>), s	22.9	0.0	22.9	0.0	61.9	0.0	63.9	0.0
Permitted Service Time (gu), s	8.1	0.0	15.6	0.0	47.7	0.0	47.7	0.0
Permitted Queue Service Time (gps), s	1.6		0.6		0.5		2.7	
Time to First Blockage (gt), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Queue Service Time Before Blockage (gfs), s								
Protected Right Saturation Flow (s _R), veh/h/ln								
Protected Right Effective Green Time (gR), s								
Multimodal	E	В	V	VB	N	IB	S	B
Pedestrian F _w / F _v	2.107	0.02	2.107	0.02	1.557	0.02	1.557	0.02
Pedestrian Fs / Fdelay	0.000	0.144	0.000	0.145	0.000	0.101	0.000	0.095
Pedestrian Mcorner / Mcw	2077.66	0.00	464.88	-6304.45	376.58	-5.74	19066.49	-6382.31

36.15

0.39

414.11

-3.64

Bicycle cb / db

Bicycle Fw / Fv

36.88

0.58

1076.42

-3.64

12.26

0.68

398.76

-3.64

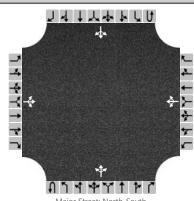
1132.85

-3.64

10.81

0.81

No errors or warnings exist.


--- Comments ---

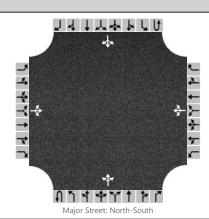
Copyright © 2016 University of Florida, All Rights Reserved.

HCS 2010[™] Streets Version 6.80

Generated: 7/25/2016 4:36:37 PM

	HCS 2010 Two-Way Stop Control Summary Report											
General Information		Site Information										
Analyst	AJB	Intersection	Belmont/South Parking Lot									
Agency/Co.	Eriksson Engineering	Jurisdiction	Arlington Heights									
Date Performed	7/25/2016	East/West Street	South Parking Lot									
Analysis Year	2016	North/South Street	Belmont Avenue									
Time Analyzed	2:30 - 3:30 PM	Peak Hour Factor	0.72									
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25									
Project Description	Existing Conditions											

Major Street: North-South

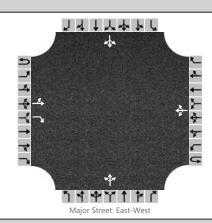

Vehicle Volumes and Adjustments

Approach		Eastbound				Westbound			Northbound				Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		14	0	20		2	0	3		9	25	3		1	87	11
Percent Heavy Vehicles		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Right Turn Channelized	No				Ν	lo		No				No				
Median Type	Undivided															

Delay, Queue Length, and Level of Service

Flow Rate (veh/h)			47				7		12			1		
Capacity			588				838		1061			1527		
v/c Ratio			0.08				0.01		0.01			0.00		
95% Queue Length			0.3				0.0		0.0			0.0		
Control Delay (s/veh)			11.7				9.3		8.4			7.4		
Level of Service (LOS)			В				А		А			А		
Approach Delay (s/veh)		11.7			9.3			2	.1	0.1				
Approach LOS	В			A										

	HCS 2010 Two-Way Stop Control Summary Report											
General Information		Site Information										
Analyst	AJB	Intersection	Belmont/South Parking Lot									
Agency/Co.	Eriksson Engineering	Jurisdiction	Arlington Heights									
Date Performed	7/25/2016	East/West Street	South Parking Lot									
Analysis Year	2016	North/South Street	Belmont Avenue									
Time Analyzed	7:00 - 8:00 AM	Peak Hour Factor	0.78									
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25									
Project Description	Existing Conditions											


Vehicle Volumes and Adjustments

Approach		Eastb	astbound Westbound					Northbound				Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		13	1	6		1	1	1		23	15	3		3	202	21
Percent Heavy Vehicles		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Right Turn Channelized		N	0	No				N	0		No					
Median Type	Undivided															

Delay, Queue Length, and Level of Service

Flow Rate (veh/h)			26			3		29			4		
Capacity			367			518		853			1584		
v/c Ratio			0.07			0.01		0.03			0.00		
95% Queue Length			0.2			0.0		0.1			0.0		
Control Delay (s/veh)			15.5			12.0		9.4			7.3		
Level of Service (LOS)			С			В		А			А		
Approach Delay (s/veh)	15.5		12	2.0		5	.4		0.	1			
Approach LOS	С			E.	В								

	HCS 2010 Two-Way Stop C	ontrol Summary Re	eport
General Information		Site Information	
Analyst	AJB	Intersection	Thomas/Belmont
Agency/Co.	Eriksson Engineering	Jurisdiction	Arlington Heights
Date Performed	7/25/2016	East/West Street	Thomas Street
Analysis Year	2016	North/South Street	Belmont Avenue
Time Analyzed	2:30 - 3:30 PM	Peak Hour Factor	0.75
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Existing Conditions		

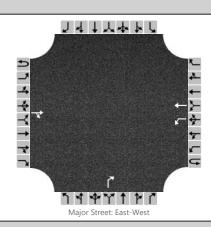

Vehicle Volumes and Adjustments

Approach	Eastbound					Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	1	0		0	1	0		0	1	0
Configuration		LT		R			LTR				LTR				LTR	
Volume (veh/h)		24	225	64		32	338	21		14	18	10		1	3	10
Percent Heavy Vehicles		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Right Turn Channelized		No No								N	lo			N	lo	
Median Type	Undivided															

Delay, Queue Length, and Level of Service

Flow Rate (veh/h)	332		43			56			18	
Capacity	1063		1097			244			380	
v/c Ratio	0.31		0.04			0.23			0.05	
95% Queue Length	0.1		0.1			0.9			0.1	
Control Delay (s/veh)	8.5		8.4			24.1			15.0	
Level of Service (LOS)	А		А			С			В	
Approach Delay (s/veh)	0	.9	1.1		24	.1		15	5.0	
Approach LOS			·		(E	3	

	HCS 2010 Two-Way Stop C	ontrol Summary Re	eport
General Information		Site Information	
Analyst	AJB	Intersection	Thomas/Belmont
Agency/Co.	Eriksson Engineering	Jurisdiction	Arlington Heights
Date Performed	7/25/2016	East/West Street	Thomas Street
Analysis Year	2016	North/South Street	Belmont Avenue
Time Analyzed	7:00 - 8:00 AM	Peak Hour Factor	0.79
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Existing Conditions		

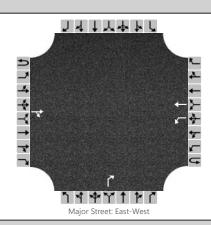

Vehicle Volumes and Adjustments

Approach	Eastbound					Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	1	0		0	1	0		0	1	0
Configuration		LT		R			LTR				LTR				LTR	
Volume (veh/h)		18	372	166		43	296	10		14	9	6		6	17	23
Percent Heavy Vehicles		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Right Turn Channelized	No No								N	0			N	lo		
Median Type	Undivided															

Delay, Queue Length, and Level of Service

3, 6, 3, 3													
Flow Rate (veh/h)	494				54				37			59	
Capacity	1155				885				200			298	
v/c Ratio	0.43				0.06				0.18			0.20	
95% Queue Length	0.1				0.2				0.7			0.7	
Control Delay (s/veh)	8.2				9.3				27.0			20.1	
Level of Service (LOS)	А				Α				D			С	
Approach Delay (s/veh)	().4		1.8				27	'.O		20).1	
Approach LOS							[)		(

	HCS 2010 Two-Way Stop C	ontrol Summary Re	eport
General Information		Site Information	
Analyst	AJB	Intersection	Thomas/Parking Lot Access
Agency/Co.	Eriksson Engineering	Jurisdiction	Arlington Heights
Date Performed	7/25/2016	East/West Street	Thomas Street
Analysis Year	2016	North/South Street	Parking Lot Access
Time Analyzed	7:00 - 8:00 AM	Peak Hour Factor	0.74
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Proposed Conditions		


Vehicle Volumes and Adjustments

Approach	Eastbound					Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		0	0	1		0	0	0
Configuration				TR		L	Т					R				
Volume (veh/h)			495	144		29	304					108				
Percent Heavy Vehicles						3						3				
Proportion Time Blocked																
Right Turn Channelized	No No								N	lo			N	lo		
Median Type	Undivided															

Delay, Queue Length, and Level of Service

zeray, Queue zerigur, arra	 									
Flow Rate (veh/h)			39					146		
Capacity			745					382		
v/c Ratio			0.05					0.38		
95% Queue Length			0.2					1.8		
Control Delay (s/veh)			10.1					20.2		
Level of Service (LOS)			В					С		
Approach Delay (s/veh)			0	.9		20).2			
Approach LOS						(

	HCS 2010 Two-Way Stop C	ontrol Summary Re	eport
General Information		Site Information	
Analyst	AJB	Intersection	Thomas/Parking Lot Access
Agency/Co.	Eriksson Engineering	Jurisdiction	Arlington Heights
Date Performed	7/25/2016	East/West Street	Thomas Street
Analysis Year	2016	North/South Street	Parking Lot Access
Time Analyzed	2:30 - 3:30 PM	Peak Hour Factor	0.78
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Proposed Conditions		

Vehicle Volumes and Adjustments

Approach	Eastbound					Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		0	0	1		0	0	0
Configuration				TR		L	Т					R				
Volume (veh/h)			289	10		5	357					41				
Percent Heavy Vehicles						3						3				
Proportion Time Blocked																
Right Turn Channelized	No No							N	0			N	lo			
Median Type	Undivided															

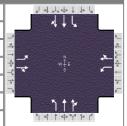
Delay, Queue Length, and Level of Service

Flow Rate (veh/h)				6						53		
Capacity				996						529		
v/c Ratio				0.01						0.10		
95% Queue Length				0.0						0.3		
Control Delay (s/veh)				8.6						12.6		
Level of Service (LOS)				А						В		
Approach Delay (s/veh)			0.1			12.6						
Approach LOS								I	3			

HCS 2010 Signalized Intersection Input Data General Information Intersection Information Eriksson Engineering Duration, h 0.25 Agency Analyst AJB Analysis Date Jul 25, 2016 Area Type Other PHF 0.95 Jurisdiction Arlington Heights Time Period 7:00 - 8:00 AM **Urban Street** Arlington Heights Road Analysis Year 2016 **Analysis Period** 1> 7:00 Arlington Heights/Thomas File Name Arl Hts 700 Prop.xus Intersection **Project Description** Proposed Conditions WB **Demand Information** EB NB SB Approach Movement L R L R L R L R Demand (v), veh/h 104 337 15 91 183 59 27 592 115 187 958 52 **J** Signal Information ധ Cycle, s 120.0 Reference Phase 2 7 Ä Offset, s 0 Reference Point -Begin Green 1.8 3.5 60.4 6.7 0.8 25.7 Uncoordinated No Simult. Gap E/W On Yellow 3.0 3.0 4.5 3.0 0.0 4.5 Force Mode Fixed Simult. Gap N/S On Red 0.0 0.0 1.5 0.0 0.0 1.5 **Traffic Information** EΒ WB NB SB Approach Movement Т R L Т R L R L Т L Т R Demand (v), veh/h 104 337 15 91 183 59 27 592 115 187 958 52 Initial Queue (Qb), veh/h 0 0 0 0 0 0 0 0 0 0 0 0 Base Saturation Flow Rate (so), veh/h 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Parking (Nm), man/h None None None None Heavy Vehicles (PHV), % 0 0 0 0 0 0 0 0 Ped / Bike / RTOR, /h 0 0 15 0 0 15 14 0 15 0 0 15 Buses (Nb), buses/h 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 Arrival Type (AT) 3 Upstream Filtering (1) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Lane Width (W), ft 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 140 100 100 Turn Bay Length, ft 0 200 0 0 0 Grade (Pg), % 0 0 0 0 Speed Limit, mi/h 25 25 25 30 30 30 35 35 35 35 35 35 **Phase Information** WBL WBT SBL **EBL EBT NBL NBT** SBT 34.8 Maximum Green (Gmax) or Phase Split, s 13.2 34.8 13.2 13.2 58.8 13.2 58.8 3.0 Yellow Change Interval (Y), s 4.5 3.0 4.5 3.0 4.5 3.0 4.5 Red Clearance Interval (Rc), s 0.0 1.5 0.0 1.5 0.0 1.5 0.0 1.5 Minimum Green (Gmin), s 3 3 3 3 3 3 3 3 Start-Up Lost Time (It), s 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Extension of Effective Green (e), s 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Passage (PT), s 3.0 5.0 3.0 5.0 3.0 7.0 3.0 7.0 Recall Mode Off Off Off Off Off Min Off Min **Dual Entry** No Yes No Yes No Yes Nο Yes Walk (Walk), s 0.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0 Pedestrian Clearance Time (PC), s 14.0 18.0 0.0 11.0 15.0 0.0 0.0 0.0 **Multimodal Information** EΒ WB NB SB 85th % Speed / Rest in Walk / Corner Radius 0 0 Nο 25 0 No 25 No 25 0 Nο 25 9.0 9.0 0 9.0 12 0 9.0 0 Walkway / Crosswalk Width / Length, ft 12 0 12 12 Street Width / Island / Curb 0 0 0 0 0 0 0 0 No No No No Width Outside / Bike Lane / Shoulder, ft 12 5.0 2.0 12 5.0 2.0 12 5.0 2.0 12 5.0 2.0 Pedestrian Signal / Occupied Parking No 0.50 0.50 No 0.50

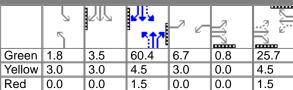
No

Generated: 7/27/2016 2:26:02 PM


0.50

No

HCS 2010 Signalized Intersection Results Summary 可可可的 **General Information Intersection Information** Eriksson Engineering Duration, h 0.25 Agency Analyst AJB Analysis Date Jul 25, 2016 Area Type Other PHF 0.95 Jurisdiction Arlington Heights Time Period 7:00 - 8:00 AM **Urban Street** Arlington Heights Road Analysis Year 2016 **Analysis Period** 1> 7:00 Arlington Heights/Thomas File Name Arl Hts 700 Prop.xus Intersection **Project Description Proposed Conditions** WB **Demand Information** EB NB SB Approach Movement L R L R L R L R 958 Demand (v), veh/h 104 337 15 91 183 59 27 592 115 187 52 14. **Signal Information** ധ Cycle, s 120.0 Reference Phase 2 51 Offset, s 0 Reference Point -Begin Green 1.8 3.5 60.4 6.7 0.8 25.7 Uncoordinated No Simult. Gap E/W On Yellow 3.0 3.0 4.5 3.0 0.0 4.5 Force Mode Fixed Simult. Gap N/S On Red 0.0 0.0 1.5 0.0 0.0 1.5 **Timer Results EBL EBT WBL WBT NBL NBT** SBL SBT **Assigned Phase** 4 3 8 2 7 5 1 6 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 10.5 32.5 9.7 31.7 4.8 66.4 11.4 73.0 Change Period, (Y+Rc), s 6.0 6.0 3.0 6.0 3.0 3.0 3.0 6.0 Max Allow Headway (MAH), s 4.3 6.2 4.2 6.2 4.1 0.0 4.1 0.0 Queue Clearance Time (g_s), s 7.6 23.5 6.9 16.1 2.9 8.0 Green Extension Time (g_e), s 0.1 3.1 0.1 4.3 0.0 0.0 0.4 0.0 Phase Call Probability 0.97 1.00 0.96 1.00 0.61 1.00 1.00 0.23 0.00 0.07 Max Out Probability 0.65 1.00 WB SB **Movement Group Results** EΒ NB Approach Movement L Т R L Т R Т R L Т L R **Assigned Movement** 7 4 14 3 8 18 5 2 12 1 6 16 28 Adjusted Flow Rate (v), veh/h 109 0 96 239 374 355 197 527 520 Adjusted Saturation Flow Rate (s), veh/h/ln 1810 1810 1836 1810 1900 1795 1810 1875 0 1900 5.6 0.9 14.7 20.4 20.4 Queue Service Time (g_s), s 0.0 4.9 14.1 14.6 6.0 Cycle Queue Clearance Time (q c), s 5.6 0.0 4.9 14.1 0.9 14.6 14.7 6.0 20.4 20.4 Green Ratio (g/C) 0.28 0.27 0.21 0.52 0.50 0.50 0.59 0.56 0.56 Capacity (c), veh/h 285 187 394 291 957 904 468 1060 1046 Volume-to-Capacity Ratio (X) 0.384 0.000 0.511 0.607 0.098 0.391 0.392 0.421 0.497 0.497 Back of Queue (Q), ft/ln (95 th percentile) 115.2 102.5 275.2 17.3 269.4 259.1 108.1 347 343.5 0 Back of Queue (Q), veh/ln (95 th percentile) 4.6 0.0 4.1 11.0 0.7 10.8 10.4 4.3 13.9 13.7 Queue Storage Ratio (RQ) (95 th percentile) 0.82 0.00 0.51 0.00 0.17 0.00 0.00 1.08 0.00 0.00 Uniform Delay (d 1), s/veh 34.3 36.1 42.6 15.2 18.4 18.4 12.9 16.2 16.2 Incremental Delay (d 2), s/veh 8.0 0.0 2.2 3.2 0.1 1.2 1.3 0.6 1.7 1.7 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 35.2 38.3 45.8 15.4 19.6 19.7 13.5 17.9 17.9 Level of Service (LOS) D D D В В В В В В 52.5 43.6 19.5 В 17.2 Approach Delay, s/veh / LOS D D В Intersection Delay, s/veh / LOS 26.8 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS 2.9 С 2.9 2.3 С В 2.3 В Bicycle LOS Score / LOS 1.3 Α 1.0 Α 1.1 Α 1.5 Α


HCS 2010 Signalized Intersection Intermediate Values

General Information				Intersection Information			
Agency	Eriksson Engineering	Duration, h	0.25				
Analyst	AJB	Analysis Date	Jul 25, 2016	Area Type	Other		
Jurisdiction	Arlington Heights	Time Period	7:00 - 8:00 AM	PHF	0.95		
Urban Street	Arlington Heights Road	Analysis Year	2016	Analysis Period	1> 7:00		
Intersection	Arlington Heights/Thomas	File Name	Arl Hts 700 Prop.x	us			
Project Description	Proposed Conditions						

Demand Information	EB		WB			NB			SB			
Approach Movement	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Demand (v), veh/h	104	337	15	91	183	59	27	592	115	187	958	52

Signal Information										
Cycle, s	120.0	Reference Phase	2							
Offset, s	0	Reference Point	Begin							
Uncoordinated	No	Simult. Gap E/W	On							
Force Mode	Fixed	Simult. Gap N/S	On							

Force Mode Fixed Simult. Gap N/S (On R	ed (0).0 [().0	1.5	0.0).0 1	.5	5	6	7	8
		EB			WB			NB			SB	
Saturation Flow / Delay	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Lane Width Adjustment Factor (fw)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Heavy Vehicle Adjustment Factor (fhv)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Approach Grade Adjustment Factor (fg)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Parking Activity Adjustment Factor (f _p)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Bus Blockage Adjustment Factor (fbb)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Area Type Adjustment Factor (fa)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Lane Utilization Adjustment Factor (fLU)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Left-Turn Adjustment Factor (f⊥τ)	0.952	0.000		0.952	0.000		0.952	0.000		0.952	0.000	
Right-Turn Adjustment Factor (frt)		1.000			0.966			0.945			0.987	
Left-Turn Pedestrian Adjustment Factor (fLpb)	1.000			1.000			1.000			0.999		
Right-Turn Ped-Bike Adjustment Factor (fRpb)			1.000			1.000			0.986			1.000
Movement Saturation Flow Rate (s), veh/h	1810	1900		1810	1480		1810	3162		1810	3634	
Proportion of Vehicles Arriving on Green (P)	0.06	0.22	0.00	0.06	0.21	0.21	0.02	0.50	0.50	0.07	0.56	0.56
Incremental Delay Factor (k)	0.11			0.11	0.23		0.11	0.50	0.50	0.11	0.50	0.50
Signal Timing / Movement Groups	EBI	E	BT/R	WB	L \	VBT/R	NBI	_ 1	NBT/R	SBL	_ 8	SBT/R
Lost Time (tL)	3.0		6.0	3.0	<u> </u>	6.0	3.0		6.0	3.0		6.0
Green Ratio (g/C)	0.28	3	0.22	0.2	7	0.21	0.52	<u> </u>	0.50	0.59)	0.56
Permitted Saturation Flow Rate (s_p) , veh/h/ln	1159	9	0	104	3	0	547		0	738	;	0
Shared Saturation Flow Rate (ssh), veh/h/ln												
Permitted Effective Green Time (g_p) , s	25.7	7	0.0	25.	7	0.0	60.4		0.0	62.4	1	0.0
Permitted Service Time (gu), s	11.6	3	0.0	3.1		0.0	44.6	5	0.0	45.8	3	0.0
Permitted Queue Service Time (gps), s	1.5			2.3			0.9			6.1		

Shared Saturation Flow Rate (Ssh), Ven/n/in								
Permitted Effective Green Time (g_p) , s	25.7	0.0	25.7	0.0	60.4	0.0	62.4	0.0
Permitted Service Time (gu), s	11.6	0.0	3.1	0.0	44.6	0.0	45.8	0.0
Permitted Queue Service Time (gps), s	1.5		2.3		0.9		6.1	
Time to First Blockage (gt), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Queue Service Time Before Blockage (gfs), s								
Protected Right Saturation Flow (s _R), veh/h/ln								
Protected Right Effective Green Time (g _R), s								
Multimodal	E	В	V	VB	NB		S	ВВ
Pedestrian Fw / Fv	2.107	0.02	2.107	0.02	1.557	0.02	1.557	0.02
Pedestrian Fs / Fdelay	0.000	0.144	0.000	0.145	0.000	0.108	0.000	0.099
Pedestrian Mcorner / Mcw			4087.61		4069.12			
Bicycle c _b / d _b	442.15	36.40	429.11	37.02	1007.04	14.79	1115.97	11.72
Bicycle Fw / Fv		0.77	-3.64	0.55	-3.64	0.62	-3.64	1.03

--- Messages ---

WARNING: Since queue spillover from turn lanes and spillback into upstream intersections is not accounted for in the HCM procedures, use of a simulation tool may be advised in situations where the Queue Storage Ratio exceeds 1.0.

--- Comments ---

Copyright © 2016 University of Florida, All Rights Reserved.

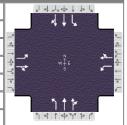
HCS 2010™ Streets Version 6.80

Generated: 7/27/2016 2:26:02 PM

HCS 2010 Signalized Intersection Input Data General Information Intersection Information Eriksson Engineering Duration, h 0.25 Agency Analyst AJB Analysis Date Jul 25, 2016 Area Type Other 2:30 - 3:30 PM PHF 0.95 Jurisdiction Arlington Heights Time Period **Urban Street** Arlington Heights Road Analysis Year 2016 **Analysis Period** 1> 2:30 Arlington Heights/Thomas File Name Arl Hts 230 Prop.xus Intersection **Project Description** Proposed Conditions WB **Demand Information** EB NB SB Approach Movement L R L R L R L R 55 Demand (v), veh/h 107 182 15 92 218 20 753 21 96 757 96 **J Signal Information** ധ Cycle, s 115.0 Reference Phase 2 51 7 Offset, s 0 Reference Point -Begin Green 1.5 0.3 61.0 6.5 0.9 23.8 Uncoordinated No Simult. Gap E/W On Yellow 3.0 4.5 3.0 3.0 0.0 4.5 Force Mode Fixed Simult. Gap N/S On Red 0.0 0.0 1.5 0.0 0.0 1.5 **Traffic Information** EΒ WB NB SB Approach Movement Т R L Т R L R L Т L Т R Demand (v), veh/h 107 182 15 218 55 20 753 21 757 96 Initial Queue (Qb), veh/h 0 0 0 0 0 0 0 0 0 0 0 0 Base Saturation Flow Rate (so), veh/h 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 1900 Parking (Nm), man/h None None None None Heavy Vehicles (PHV), % 0 0 0 0 0 0 0 0 Ped / Bike / RTOR, /h 25 0 15 1 1 15 122 0 15 2 0 15 Buses (Nb), buses/h 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 3 Arrival Type (AT) 3 Upstream Filtering (1) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Lane Width (W), ft 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 140 100 100 Turn Bay Length, ft 0 200 0 0 0 Grade (Pg), % 0 0 0 0 Speed Limit, mi/h 25 25 25 30 30 30 35 35 35 35 35 35 **Phase Information** WBL SBL **EBL EBT WBT NBL NBT** SBT Maximum Green (Gmax) or Phase Split, s 12.7 34.5 12.7 34.5 12.7 55.1 12.7 55.1 Yellow Change Interval (Y), s 3.0 4.5 3.0 4.5 3.0 4.5 3.0 4.5 Red Clearance Interval (Rc), s 0.0 1.5 0.0 1.5 0.0 1.5 0.0 1.5 Minimum Green (Gmin), s 3 3 3 3 3 3 3 3 Start-Up Lost Time (It), s 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Extension of Effective Green (e), s 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 Passage (PT), s 3.0 5.0 3.0 5.0 3.0 7.0 3.0 7.0 Recall Mode Off Off Off Off Off Min Off Min **Dual Entry** No Yes No Yes No Yes Nο Yes Walk (Walk), s 0.0 10.0 0.0 10.0 0.0 10.0 0.0 10.0 Pedestrian Clearance Time (PC), s 14.0 18.0 0.0 11.0 15.0 0.0 0.0 0.0 **Multimodal Information** EΒ WB NB SB 85th % Speed / Rest in Walk / Corner Radius 0 0 Nο 25 0 No 25 No 25 0 Nο 25 9.0 9.0 0 9.0 12 0 9.0 0 Walkway / Crosswalk Width / Length, ft 12 0 12 12 Street Width / Island / Curb 0 0 0 0 0 0 0 0 No No No No Width Outside / Bike Lane / Shoulder, ft 12 5.0 2.0 12 5.0 2.0 12 5.0 2.0 12 5.0 2.0 Pedestrian Signal / Occupied Parking No 0.50 0.50 No 0.50

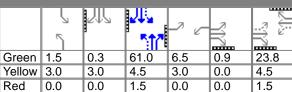
No

Generated: 7/25/2016 5:15:46 PM


0.50

No

HCS 2010 Signalized Intersection Results Summary General Information Intersection Information Eriksson Engineering Duration, h 0.25 Agency Analyst AJB Analysis Date Jul 25, 2016 Area Type Other 2:30 - 3:30 PM PHF 0.95 Jurisdiction Arlington Heights Time Period **Urban Street** Arlington Heights Road Analysis Year 2016 **Analysis Period** 1> 2:30 Arlington Heights/Thomas File Name Intersection Arl Hts 230 Prop.xus **Project Description Proposed Conditions** WB **Demand Information** EB NB SB Approach Movement L R L R L R L R 55 Demand (v), veh/h 107 182 15 92 218 20 753 21 96 757 96 14. **Signal Information** ധ Cycle, s 115.0 Reference Phase 2 7 Ä Offset, s 0 Reference Point Begin Green 1.5 0.3 61.0 6.5 0.9 23.8 Uncoordinated No Simult. Gap E/W On Yellow 3.0 3.0 4.5 3.0 0.0 4.5 Force Mode Fixed Simult. Gap N/S On Red 0.0 0.0 1.5 0.0 0.0 1.5 **Timer Results EBL EBT WBL** WBT **NBL NBT** SBL SBT **Assigned Phase** 4 3 8 2 7 5 1 6 Case Number 1.1 4.0 1.1 4.0 1.1 4.0 1.1 4.0 Phase Duration, s 10.4 30.6 9.5 29.8 4.5 67.0 7.8 70.4 Change Period, (Y+Rc), s 6.0 6.0 3.0 6.0 3.0 3.0 3.0 6.0 Max Allow Headway (MAH), s 4.3 6.1 4.2 6.1 4.1 0.0 4.1 0.0 Queue Clearance Time (g_s), s 7.6 12.1 6.8 17.8 2.6 4.8 Green Extension Time (g_e), s 0.1 3.6 0.1 3.0 0.0 0.0 0.2 0.0 Phase Call Probability 0.97 1.00 0.95 1.00 0.49 0.96 1.00 0.06 0.24 Max Out Probability 1.00 0.00 0.00 WB SB **Movement Group Results** EΒ NB Approach Movement L Т R L Т R Т R L Т L R **Assigned Movement** 7 4 14 3 8 18 5 2 12 1 6 16 Adjusted Flow Rate (v), veh/h 113 0 97 272 21 400 398 101 449 433 Adjusted Saturation Flow Rate (s), veh/h/ln 1810 1810 1844 1810 1900 1890 1810 1900 1834 0 5.6 4.8 15.8 0.6 14.4 14.4 2.8 Queue Service Time (g_s), s 0.0 15.7 15.7 15.7 Cycle Queue Clearance Time (q c), s 5.6 0.0 4.8 15.8 0.6 14.4 14.4 2.8 15.7 Green Ratio (g/C) 0.27 0.26 0.21 0.54 0.53 0.53 0.59 0.56 0.56 Capacity (c), veh/h 258 297 381 345 1008 1003 418 1063 1027 Volume-to-Capacity Ratio (X) 0.437 0.000 0.326 0.713 0.061 0.397 0.397 0.242 0.422 0.422 Back of Queue (Q), ft/ln (95 th percentile) 115 97.1 308.4 11.3 262.3 261.3 49.5 277.2 269.9 0 Back of Queue (Q), veh/ln (95 th percentile) 4.6 0.0 3.9 12.3 0.5 10.5 10.5 2.0 11.1 10.8 Queue Storage Ratio (RQ) (95 th percentile) 0.82 0.00 0.49 0.00 0.11 0.00 0.00 0.50 0.00 0.00 Uniform Delay (d 1), s/veh 33.8 33.6 42.4 13.0 16.0 16.0 11.6 14.6 14.6 Incremental Delay (d 2), s/veh 1.2 0.0 0.6 5.8 0.1 1.2 1.2 0.3 1.2 1.3 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 34.9 34.2 48.3 13.1 17.2 17.2 11.9 15.8 15.9 Level of Service (LOS) С С D В В В В В В 38.9 44.6 17.1 В 15.4 В Approach Delay, s/veh / LOS D D Intersection Delay, s/veh / LOS 23.2 С **Multimodal Results** ΕB WB NB Pedestrian LOS Score / LOS С 2.9 2.9 С 2.3 В 2.3 В Bicycle LOS Score / LOS 1.0 Α 1.1 Α 1.2 Α 1.3 Α


HCS 2010 Signalized Intersection Intermediate Values

General Information				Intersection Information			
Agency	Eriksson Engineering	Duration, h	0.25				
Analyst	AJB	Analysis Date	Jul 25, 2016	Area Type	Other		
Jurisdiction	Arlington Heights	Time Period	2:30 - 3:30 PM	PHF	0.95		
Urban Street	Arlington Heights Road	Analysis Year	2016	Analysis Period	1> 2:30		
Intersection	Arlington Heights/Thomas	File Name	Arl Hts 230 Prop.x	us			
Project Description	Proposed Conditions						

Demand Information	EB			WB			NB			SB		
Approach Movement	L	Т	R	L	Т	R	L	Т	R	L	T	R
Demand (v), veh/h	107	182	15	92	218	55	20	753	21	96	757	96

Signal Information										
Cycle, s	115.0	Reference Phase	2							
Offset, s	0	Reference Point	Begin							
Uncoordinated	No	Simult. Gap E/W	On							
Force Mode	Fixed	Simult. Gap N/S	On							

	EB WB NB				SB							
Saturation Flow / Delay	L	Т	R	L	Т	R	L	Т	R	L	Т	R
Lane Width Adjustment Factor (fw)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Heavy Vehicle Adjustment Factor (fhv)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Approach Grade Adjustment Factor (fg)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Parking Activity Adjustment Factor (fp)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Bus Blockage Adjustment Factor (fbb)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Area Type Adjustment Factor (fa)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Lane Utilization Adjustment Factor (fLU)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Left-Turn Adjustment Factor (fLT)	0.952	0.000		0.952	0.000		0.952	0.000		0.952	0.000	
Right-Turn Adjustment Factor (frt)		1.000			0.970			0.995			0.965	
Left-Turn Pedestrian Adjustment Factor (fLpb)	0.999			0.979			1.000			0.993		
Right-Turn Ped-Bike Adjustment Factor (f _{Rpb})			1.000			0.986			0.885			0.998
Movement Saturation Flow Rate (s), veh/h	1810	1900		1810	1558		1810	3760		1810	3373	
Proportion of Vehicles Arriving on Green (P)	0.06	0.21	0.00	0.06	0.21	0.21	0.01	0.53	0.53	0.04	0.56	0.56
Incremental Delay Factor (k)	0.11			0.11	0.26		0.11	0.50	0.50	0.11	0.50	0.50
Signal Timing / Movement Groups	EBI	_ E	BT/R	WB	L V	VBT/R	NBI	_ 1	NBT/R	SBL	_	SBT/R
Lost Time (tL)	3.0		6.0	3.0		6.0	3.0		6.0	3.0		6.0
Green Ratio (q/C)	0.27	7	0.21	0.26	3	0.21	0.54		0.53	0.59)	0.56

Signal Timing / Movement Groups	EBL	EBT/R	WBL	WBT/R	NBL	NBT/R	SBL	SBT/R
Lost Time (t _L)	3.0	6.0	3.0	6.0	3.0	6.0	3.0	6.0
Green Ratio (g/C)	0.27	0.21	0.26	0.21	0.54	0.53	0.59	0.56
Permitted Saturation Flow Rate (s _ρ), veh/h/ln	1125	0	1210	0	639	0	691	0
Shared Saturation Flow Rate (ssh), veh/h/ln								
Permitted Effective Green Time (g_p) , s	23.8	0.0	23.8	0.0	61.0	0.0	63.0	0.0
Permitted Service Time (gu), s	8.0	0.0	12.5	0.0	46.7	0.0	46.6	0.0
Permitted Queue Service Time (gps), s	1.8		1.0		0.5		2.8	
Time to First Blockage (gt), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Queue Service Time Before Blockage (gfs), s								
Protected Right Saturation Flow (s _R), veh/h/ln								
Protected Right Effective Green Time (g _R), s								
Multimodal	EB		V	VB	NB		S	SB
Pedestrian Fw / Fv	2.107	0.02	2.107	0.02	1.557	0.02	1.557	0.02
Pedestrian Fs / Fdelay	0.000	0.143	0.000	0.144	0.000	0.102	0.000	0.097
Pedestrian Mcorner / Mcw	2078.41	0.00	464.89	-6304.55	376.16	-6.88	19066.21	-6382.11

428.43

-3.64

35.50

0.50

Bicycle c_b / d_b

Bicycle Fw / Fv

36.21

0.61

1061.54

-3.64

12.66

0.68

413.21

-3.64

11.15

0.81

1119.26

-3.64

Messages -	
------------	--

No errors or warnings exist.


--- Comments ---

Copyright © 2016 University of Florida, All Rights Reserved.

HCS 2010[™] Streets Version 6.80

Generated: 7/25/2016 5:15:46 PM

	HCS 2010 Two-Way Stop C	ontrol Summary Re	eport
General Information		Site Information	
Analyst	AJB	Intersection	Thomas/Belmont
Agency/Co.	Eriksson Engineering	Jurisdiction	Arlington Heights
Date Performed	7/25/2016	East/West Street	Thomas Street
Analysis Year	2016	North/South Street	Belmont Avenue
Time Analyzed	7:00 - 8:00 AM	Peak Hour Factor	0.79
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Proposed Conditions		

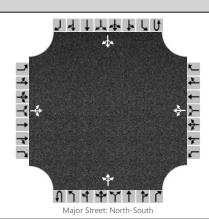

Vehicle Volumes and Adjustments

Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	1	0		0	1	0		0	1	0
Configuration		LT		R			LTR				LTR				LTR	
Volume (veh/h)		18	411	174		48	296	10		14	9	6		6	18	23
Percent Heavy Vehicles		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Right Turn Channelized		N	lo			Ν	lo			N	lo			N	lo	
Median Type	Undivided															

Delay, Queue Length, and Level of Service

Flow Rate (veh/h)	543		61				37			60	
Capacity	1155		841				178			272	
v/c Ratio	0.47		0.07				0.21			0.22	
95% Queue Length	0.1		0.2				0.8			0.8	
Control Delay (s/veh)	8.2		9.6				30.4			22.0	
Level of Service (LOS)	А		А				D			С	
Approach Delay (s/veh)	С	.4	2.:	1		30	.4		22	2.0	
Approach LOS					С)		(

	HCS 2010 Two-Way Stop C	ontrol Summary Re	eport
General Information		Site Information	
Analyst	AJB	Intersection	Thomas/Belmont
Agency/Co.	Eriksson Engineering	Jurisdiction	Arlington Heights
Date Performed	7/25/2016	East/West Street	Thomas Street
Analysis Year	2016	North/South Street	Belmont Avenue
Time Analyzed	2:30 - 3:30 PM	Peak Hour Factor	0.75
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Proposed Conditions		

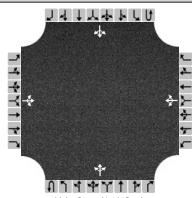

Vehicle Volumes and Adjustments

Approach		Eastbound				Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	1	0	0	1	0		0	1	0		0	1	0
Configuration		LT		R			LTR				LTR				LTR	
Volume (veh/h)		24	237	69		33	338	21		14	18	10		1	4	10
Percent Heavy Vehicles		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Right Turn Channelized	No					Ν	lo			N	lo			N	lo	
Median Type	Undivided															

Delay, Queue Length, and Level of Service

Flow Rate (veh/h)	348			44				56			19	
Capacity	1063			1076				237			360	
v/c Ratio	0.33			0.04				0.24			0.05	
95% Queue Length	0.1			0.1				0.9			0.2	
Control Delay (s/veh)	8.5			8.5				24.9			15.5	
Level of Service (LOS)	А			А				С			С	
Approach Delay (s/veh)		0.9	1.1				24	l.9		15	5.5	
Approach LOS							((

	HCS 2010 Two-Way Stop C	ontrol Summary Re	eport
General Information		Site Information	
Analyst	AJB	Intersection	Belmont/Ex. Parking Lot
Agency/Co.	Eriksson Engineering	Jurisdiction	Arlington Heights
Date Performed	9/23/2016	East/West Street	Ex. Parking Lot Driveway
Analysis Year	2016	North/South Street	Belmont Avenue
Time Analyzed	7:00 - 8:00 AM	Peak Hour Factor	0.78
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Proposed Conditions		


Vehicle Volumes and Adjustments

Approach		Eastbound				Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		13	1	6		1	1	1		24	15	3		3	216	21
Percent Heavy Vehicles		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Right Turn Channelized	No					N	lo			N	0			N	lo	
Median Type								Undi	vided							

Delay, Queue Length, and Level of Service

Flow Rate (veh/h)			26			3		31			4		
Capacity			355			504		840			1584		
v/c Ratio			0.07			0.01		0.04			0.00		
95% Queue Length			0.2			0.0		0.1			0.0		
Control Delay (s/veh)			15.9			12.2		9.5			7.3		
Level of Service (LOS)			С			В		А			А		
Approach Delay (s/veh)	15.9			12	2.2		5	.6		0.	.1		
Approach LOS	С			ı	В								

	HCS 2010 Two-Way Stop C	ontrol Summary Re	eport
General Information		Site Information	
Analyst	AJB	Intersection	Belmont/Ex. Parking Lot
Agency/Co.	Eriksson Engineering	Jurisdiction	Arlington Heights
Date Performed	9/23/2016	East/West Street	Ex. Parking Lot Driveway
Analysis Year	2016	North/South Street	Belmont Avenue
Time Analyzed	2:30 - 3:30 PM	Peak Hour Factor	0.72
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Proposed Conditions		

Major Street: North-South

Vehicle Volumes and Adjustments

Approach		Eastbound				Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	0	1	0	0	0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		14	0	20		2	0	3		11	25	3		1	94	11
Percent Heavy Vehicles		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Right Turn Channelized		N	lo			N	lo			N	lo			N	lo	
Median Type	Undivided															

Delay, Queue Length, and Level of Service

z oray, Quoue zongui, una													
Flow Rate (veh/h)			47			7		15			1		
Capacity			577			827		1052			1527		
v/c Ratio			0.08			0.01		0.01			0.00		
95% Queue Length			0.3			0.0		0.0			0.0		
Control Delay (s/veh)			11.8			9.4		8.5			7.4		
Level of Service (LOS)			В			А		А			А		
Approach Delay (s/veh)	11.8			9	.4		2.	.4		0.	1		
Approach LOS	В			-	4								