

9575 West Higgins Road, Suite 400 | Rosemont, Illinois 60018 p: 847-518-9990 | f: 847-518-9987

| MEMORANDUM TO: | John Agenlian<br>Lexington Homes, LLC                                                   |
|----------------|-----------------------------------------------------------------------------------------|
| FROM:          | Nicholas J. Butler<br>Consultant                                                        |
|                | Luay R. Aboona, PE<br>Principal                                                         |
| DATE:          | October 4, 2016                                                                         |
| SUBJECT:       | Traffic Impact Study<br>Proposed Residential Development<br>Arlington Heights, Illinois |

This memorandum summarizes the methodologies, results and findings of a site traffic evaluation conducted by Kenig, Lindgren, O'Hara, Aboona, Inc. (KLOA, Inc.) for a proposed residential development to be located in Arlington Heights, Illinois. The site, which is currently occupied by four single-family homes, is located in the southwest quadrant of the intersection of Old Arlington Heights Road with Country Lane. As proposed, the development is to contain 48 townhomes and provide a total of 202 parking spaces. Access to the development is proposed via two full movement access drives on Old Arlington Heights Road and Country Lane.

Figure 1 shows the location of the site in relation to the area roadway system. Figure 2 shows an aerial view of the site area.

The purpose of this study was to examine background traffic conditions, assess the impact that the proposed development will have on traffic conditions in the area, and determine if any roadway or access improvements are necessary to accommodate traffic generated by the proposed development.

The sections of this memorandum present the following:

- Existing roadway conditions
- A description of the proposed development
- Directional distribution of the development traffic
- Vehicle trip generation for the development
- Future traffic conditions including access to the site
- Traffic analyses for the weekday morning and evening peak hours
- Recommendations with respect to adequacy of the site access system and adjacent roadway system
- Recommendations regarding the adequacy of the parking supply





**Aerial View of Site Location** 

Figure 2

## **Existing Conditions**

Existing transportation conditions in the vicinity of the site were documented based on field visits conducted by KLOA, Inc. in order to obtain a database for projecting future conditions. The following provides a description of the geographical location of the site, physical characteristics of the area roadway system including lane usage and traffic control devices, and existing peak hour traffic volumes.

#### Site Location

The site, which is currently occupied by four single-family homes, is located in the southwest quadrant of the intersection of Old Arlington Heights Road with Country Lane. Area land uses in the vicinity of the site are primarily residential and commercial with the Timber Court Luxury Condominiums and single-family homes to the north, Mill Creek Condominiums and single-family homes to the south and west.

#### **Existing Roadway System Characteristics**

The following summarizes the existing roadway characteristics within the vicinity of the site which are illustrated in **Figure 3**.

*Old Arlington Heights Road* is a north-south local roadway that extends from Dundee Road south to Arlington Heights Road where it becomes University Drive. In the vicinity of the site, it provides one through lane in each direction. At its signalized intersection with Arlington Heights Road, Old Arlington Heights Road provides a combined left-turn/through lane and a combined through/right-turn lane on both approaches. At its unsignalized intersection with Country Lane, Old Arlington Heights Road provides a combined through/right-turn lane on the southbound approach and a combined through/left-turn lane on the northbound approach. At its unsignalized intersection with Dundee Road, Old Arlington Heights Road provides one lane on the northbound approach restricted to right-turn movements under stop sign control. Old Arlington Heights Road has a mix of urban and rural cross-sections, is under the jurisdiction of the Illinois Department of Transportation (IDOT), and has a posted speed limit of 40 miles per hour.

*Country Lane* is an east-west local roadway that in the vicinity of the site provides one wide through lane in each direction. At its unsignalized intersection with Old Arlington Heights Road, Country Lane provides a combined left-turn/through/right-turn lane under stop sign control.

*Arlington Heights Road* is a north-south roadway that in the vicinity of the site provides a fivelane cross-section with two through lanes in each direction and a median. At its signalized intersection with Old Arlington Heights Road, Arlington Heights Road provides an exclusive leftturn lane, an exclusive through lane, and a combined through/right-turn lane on both approaches. Arlington Heights Road provides a crosswalk on the south leg of the intersection. Arlington Heights Road is under the jurisdiction of the Cook County Department of Transportation and Highways, is classified as a minor arterial by IDOT, carries an average daily traffic (ADT) volume of 21,800 vehicles, and has a posted speed limit of 40 miles per hour.



*Dundee Road (IL 68)* is an east-west roadway that in the vicinity of the site provides a five-lane cross-section with two through lanes in each direction and a median. At its unsignalized intersection with Old Arlington Heights Road, Dundee Road provides an exclusive through lane and a combined through/right-turn lane on the eastbound approach and an exclusive left-turn lane and two through lanes on the westbound approach. Dundee Road is under the jurisdiction of IDOT, is classified by IDOT as an other principal arterial, carries an ADT volume of 27,700 vehicles, and has a posted speed limit of 35 miles per hour.

#### **Existing Traffic Volumes**

In order to determine current traffic conditions in the vicinity of the site, KLOA, Inc. conducted peak period vehicle traffic counts on Tuesday, April 19, 2016 during the weekday morning (7:00 A.M. to 9:00 A.M.) and weekday evening (4:00 P.M. to 6:00 P.M.) peak periods at the following intersections:

- Old Arlington Heights Road with Arlington Heights Road
- Old Arlington Heights Road with Country Lane
- Old Arlington Heights Road with Dundee Road

The results of the traffic counts showed that the weekday morning peak hour of traffic occurs from 7:00 A.M. to 8:00 A.M. and the evening peak hour of traffic occurs from 5:00 P.M. to 6:00 P.M. **Figure 4** illustrates the existing peak hour traffic volumes.

#### Accident Analysis

KLOA, Inc. obtained accident data from IDOT for the past five years (2010 to 2014) for the intersections of Old Arlington Heights Road with Arlington Heights Road, Country Lane, and Dundee Road. **Tables 1, 2,** and **3** summarize the accident data for the intersections. A review of the data indicated that there were no fatalities reported and that the frequency of accidents was relatively low, considering the amount of traffic traveling along Old Arlington Heights Road. Furthermore, the intersection is not listed in IDOT's Statewide or Local Five Percent Report which presents the five percent of state, county, township and municipal roadway segments and intersections exhibiting the most pressing safety needs.

DISCLAIMER: The motor vehicle crash data referenced herein was provided by the Illinois Department of Transportation. The author is responsible for any data analyses and conclusions drawn.



|              |       |        | Type of  | Accident Fre | quency   |       |          |
|--------------|-------|--------|----------|--------------|----------|-------|----------|
| Year         | Angle | Object | Rear End | Sideswipe    | Turning  | Other | Total    |
| 2010         | -     | -      | 3        | 1            | -        | 1     | 5        |
| 2011         | 1     | 1      | 2        | -            | 1        | 1     | 6        |
| 2012         | 1     | -      | 1        | -            | 2        | -     | 4        |
| 2013         | -     | -      | -        | -            | 2        | -     | 2        |
| 2014         | =     | Ξ      | <u>2</u> | <u>1</u>     | <u>1</u> | Ξ     | <u>4</u> |
| Total        | 2     | 1      | 8        | 2            | 6        | 2     | 21       |
| Average/Year | >1.0  | >1.0   | 1.6      | >1.0         | 1.2      | >1.0  | 4.2      |

#### Table 1 OLD ARLINGTON HEIGHTS ROAD WITH ARLINGTON HEIGHTS ROAD ACCIDENT SUMMARY

Table 2OLD ARLINGTON HEIGHTS ROAD WITH COUNTRY LANE ACCIDENT SUMMARY

|              |       |        | Type of  | Accident Fre | quency  |       |          |
|--------------|-------|--------|----------|--------------|---------|-------|----------|
| Year         | Angle | Object | Rear End | Sideswipe    | Turning | Other | Total    |
| 2010         | -     | -      | 1        | -            | -       | -     | 1        |
| 2011         | -     | -      | -        | -            | -       | -     | 0        |
| 2012         | -     | -      | -        | -            | -       | -     | 0        |
| 2013         | -     | -      | 1        | -            | -       | -     | 1        |
| 2014         | =     | =      | =        | =            | =       | Ξ     | <u>0</u> |
| Total        | 0     | 0      | 2        | 0            | 0       | 0     | 2        |
| Average/Year | 0     | 0      | >1.0     | 0            | 0       | 0     | >1.0     |

|              |       |        | Type of  | Accident Fre | quency   |       |          |
|--------------|-------|--------|----------|--------------|----------|-------|----------|
| Year         | Angle | Object | Rear End | Sideswipe    | Turning  | Other | Total    |
| 2010         | -     | -      | 2        | -            | -        | 1     | 3        |
| 2011         | 1     | 1      | 2        | 1            | -        | 1     | 6        |
| 2012         | -     | -      | 2        | -            | -        | -     | 2        |
| 2013         | -     | 1      | 1        | -            | -        | 1     | 3        |
| 2014         | =     | =      | <u>2</u> | =            | <u>1</u> | Ξ     | <u>3</u> |
| Total        | 1     | 2      | 9        | 1            | 1        | 3     | 17       |
| Average/Year | >1.0  | >1.0   | 1.8      | >1.0         | >1.0     | >1.0  | 3.4      |

 Table 3

 OLD ARLINGTON HEIGHTS ROAD WITH DUNDEE ROAD ACCIDENT SUMMARY

## **Traffic Characteristics of the Proposed Development**

#### **Proposed Development Plan**

As proposed, the plans call for developing the site with 48 townhomes. A total of 202 parking spaces (96 in garages) will be provided for residents and visitors. Access to the proposed development will be provided via two access drives on Country Lane and Old Arlington Heights Road. The access drive on Old Arlington Heights Road will be located approximately 400 feet south of Country Lane and the access drive on Country Lane will be located approximately 250 feet west of Old Arlington Heights Road. Both access drives will provide one inbound lane and one outbound lane with outbound movements under stop sign control. In addition, Old Arlington Heights Road will be widened on the west side along the site frontage to provide a second through lane matching the existing two southbound lanes to the north and south. A copy of the site plan is included in the Appendix.

#### **Directional Distribution**

The directional distribution of future site-generated trips on the roadway system is a function of several variables, including the operational characteristics of the roadway system and the ease with which drivers can travel over various sections of the roadway system without encountering congestion. The directions from which development-generated traffic will approach and depart the development were estimated based on existing travel patterns, as determined from the traffic counts. The estimated directional distribution of development traffic is shown in **Figure 5**.

#### **Estimated Site Traffic Generation**

The volume of traffic generated by a development is based on the type of land uses and the size of the development. The number of peak hour vehicle trips estimated to be generated by the proposed townhome development is based on vehicle trip generation rates contained in *Trip Generation Manual*, 9<sup>th</sup> Edition, published by the Institute of Transportation Engineers (ITE). Land-Use Code 230 rates were used to estimate the trips to be generated by the townhomes. **Table 4** shows the site-generated traffic volumes for the proposed development.

| ESTIMA      | TED SITE-GEN            | ERA                     | TED TR           | AFFIC VC      | )LUME      | S                |               |                                   |
|-------------|-------------------------|-------------------------|------------------|---------------|------------|------------------|---------------|-----------------------------------|
| ITE         |                         | We                      | ekday N          | Iorning       | We         | ekday E          | Evening       | Deiler                            |
| Land        |                         |                         | Реак Н           | our           |            | Реак н           | our           | Daily                             |
| Use<br>Code | Type/Size               | In                      | Out              | Total         | In         | Out              | Total         | Two Way Trips                     |
| 230         | Townhomes<br>(48 Units) | 5                       | 24               | 29            | 22         | 11               | 33            | 346                               |
|             |                         | <i>e<sup>x</sup></i> (0 | .80*ln(x<br>= 29 | c)+0.26)<br>9 | $e^{x}(0)$ | .82*ln(x<br>= 33 | c)+0.32)<br>3 | $e^{x}(0.87*ln(x)+2.46)$<br>= 346 |

Table 4 ESTIMATED SITE-GENERATED TRAFFIC VOLUMES



## **Projected Traffic Conditions**

The total projected traffic volumes include the existing traffic volumes, increase in background traffic due to growth, and the traffic estimated to be generated by the proposed subject development.

#### **Development Traffic Assignment**

The estimated weekday morning and evening peak hour traffic volumes that will be generated by the proposed development were assigned to the roadway system in accordance with the previously described directional distribution (Figure 5) and are illustrated in **Figure 6**.

#### **Background Traffic Conditions**

Based on the Chicago Metropolitan Agency for Planning (CMAP) Year 2040 population and employment projections, the existing traffic volumes were increased by one-half percent per year for two years (buildout year plus one) to project the Year 2018 background traffic volumes. A copy of the CMAP Year 2040 projections letter is included in the Appendix.

#### **Total Projected Traffic Volumes**

The existing traffic volumes accounting for growth were combined with the peak hour traffic volumes generated by the development to determine the Year 2018 total projected traffic volumes that are shown in **Figure 7**.





## **Traffic Analysis**

Traffic analyses were performed for the intersections in the study area to determine the operation of the existing roadway system, evaluate the impact of the proposed development, and determine the ability of the roadway system to accommodate projected traffic demands. Analyses were performed for the weekday morning and evening peak hours for both the existing and projected traffic volumes.

The traffic analyses were performed using the methodologies outlined in the Transportation Research Board's *Highway Capacity Manual (HCM), 2010* and analyzed using the Synchro/SimTraffic 8 software. The analyses for the traffic-signal controlled intersections were accomplished using field measured cycle lengths and phasings to determine the average overall vehicle delay and levels of service.

The analyses for the unsignalized intersections determine the average control delay to vehicles at an intersection. Control delay is the elapsed time from a vehicle joining the queue at a stop sign (includes the time required to decelerate to a stop) until its departure from the stop sign and resumption of free flow speed. The methodology analyzes each intersection approach controlled by a stop sign and considers traffic volumes on all approaches and lane characteristics.

The ability of an intersection to accommodate traffic flow is expressed in terms of level of service, which is assigned a letter from A to F based on the average control delay experienced by vehicles passing through the intersection. The *Highway Capacity Manual* definitions for levels of service and the corresponding control delay for signalized intersections and unsignalized intersections are included in the Appendix of this report.

Summaries of the traffic analysis results showing the level of service and overall intersection delay (measured in seconds) for the existing and projected conditions are presented in **Tables 5** and **6**. A discussion of the intersections follows. Summary sheets for the capacity analyses are included in the Appendix.

|                                                                                | Weekday     | y Morning | Weekda   | y Evening |
|--------------------------------------------------------------------------------|-------------|-----------|----------|-----------|
|                                                                                | Peak        | Hour      | Peak     | Hour      |
|                                                                                | Level of    | Delay     | Level of | Delay     |
|                                                                                | Service     | (seconds) | Service  | (seconds) |
| Intersection                                                                   |             |           |          |           |
| Arlington Heights Road with Old Arlington H                                    | eights Road | 1         |          |           |
| • Overall                                                                      | В           | 12.2      | В        | 16.1      |
| Eastbound Approach                                                             | В           | 17.3      | В        | 13.9      |
| Westbound Approach                                                             | С           | 25.7      | С        | 32.3      |
| Northbound Approach                                                            | А           | 8.0       | В        | 13.6      |
| Southbound Approach                                                            | В           | 12.1      | В        | 14.2      |
| Old Arlington Heights Road with Country Lar                                    | $e^2$       |           |          |           |
| • Eastbound Approach                                                           | В           | 10.6      | В        | 12.9      |
| Westbound Approach                                                             | В           | 10.6      | В        | 13.2      |
| Old Arlington Heights Road with Dundee Roa                                     | $d^2$       |           |          |           |
| • Westbound Left Turn                                                          | С           | 23.4      | С        | 15.2      |
| Northbound Approach                                                            | Е           | 46.6      | С        | 23.9      |
| <sup>1</sup> Signalized Intersection<br><sup>2</sup> Unsignalized Intersection |             |           |          |           |

# Table 5LEVEL OF SERVICE AND DELAY – EXISTING CONDITIONS

|                                              | Weekday<br>Peak     | y Morning<br>Hour  | Weekday             | y Evening<br>Hour  |
|----------------------------------------------|---------------------|--------------------|---------------------|--------------------|
|                                              | Level of<br>Service | Delay<br>(seconds) | Level of<br>Service | Delay<br>(seconds) |
| Intersection                                 |                     | · · · · · ·        |                     | ×                  |
| Arlington Heights Road with Old Arlington He | eights Road         | 1                  |                     |                    |
| • Overall                                    | В                   | 12.4               | В                   | 16.4               |
| Eastbound Approach                           | В                   | 17.1               | В                   | 13.9               |
| Westbound Approach                           | С                   | 25.6               | С                   | 32.2               |
| Northbound Approach                          | А                   | 8.2                | В                   | 14.1               |
| Southbound Approach                          | В                   | 12.3               | В                   | 14.6               |
| Old Arlington Heights Road with Country Lan  | e <sup>2</sup>      |                    |                     |                    |
| Eastbound Approach                           | В                   | 11.1               | В                   | 13.3               |
| Westbound Approach                           | В                   | 10.7               | В                   | 13.6               |
| Old Arlington Heights Road with Dundee Road  | $d^2$               |                    |                     |                    |
| • Westbound Left Turn                        | С                   | 24.3               | С                   | 15.8               |
| Northbound Approach                          | F                   | 52.8               | D                   | 25.1               |
| Old Arlington Heights Road with Access Drive | $e^2$               |                    |                     |                    |
| Eastbound Approach                           | А                   | 9.6                | В                   | 11.0               |
| Country Lane with Access Drive <sup>2</sup>  |                     |                    |                     |                    |
| Northbound Approach                          | А                   | 8.4                | А                   | 8.5                |
| <sup>1</sup> Signalized Intersection         |                     |                    |                     |                    |

#### Table 6 LEVEL OF SERVICE AND DELAY – FUTURE CONDITIONS

## **Discussion and Recommendations**

The following summarizes how the intersections are projected to operate and identifies any roadway and traffic control improvements necessary to accommodate the development traffic.

#### Arlington Heights Road with Old Arlington Heights Road

As it can be seen from the results of the capacity analyses, the intersection of Arlington Heights Road with Old Arlington Heights Road is currently operating at LOS B during the weekday morning and evening peak hours. Under future conditions, the intersection will continue operating at the same LOS during the peak hours. Based on the results of the capacity analyses, no additional improvements will be necessary at this intersection in conjunction with the proposed development.

#### Old Arlington Heights Road with Country Lane

As it can be seen from the results of the capacity analyses, the eastbound and westbound approaches of the intersection of Old Arlington Heights Road with Country Lane are currently operating at LOS B during the weekday morning and evening peak hours. Under future conditions, the intersection will continue operating at the same LOS during the peak hours. Based on the results of the capacity analyses, no additional improvements will be necessary at this intersection in conjunction with the proposed development.

#### Old Arlington Heights Road with Dundee Road

The results of the capacity analysis indicate that the outbound right-turn movements from Old Arlington Heights Road currently operate at LOS E during the weekday morning peak hour. During the evening peak hour, the outbound right-turn movements operate at LOS C. Under future conditions, with the addition of seven trips during the morning peak hour and four trips during the evening peak hour to the northbound right turns, the northbound approach will experience an increase of approximately six and less than two seconds in average delay during the weekday morning and evening peak hours resulting in LOS F and LOS D, respectively. This is reflective of the westbound left-turn movement which is currently operating at LOS C during the weekday morning and evening peak hours and is expected to continue operating at LOS C under future conditions. It should be noted that the results of the capacity analysis for this intersection do not take into account its proximity to the traffic signal at the Buffalo Grove High School access drive to the west which creates gaps in the eastbound traffic stream, allowing right-turn out and left-turn in movements to occur with less delay than indicated by the results.

#### **Operations of Proposed Access Drives**

Based on the capacity analyses, the proposed access drives will operate at acceptable levels of service and will be adequate in accommodating the traffic projected to be generated by the proposed development. The provision of two access drives will ensure flexible and emergency access is provided for the proposed development. In addition, the expansion of Old Arlington Heights Road to two southbound lanes south of Country Lane will provide additional opportunities for vehicles to turn right onto Old Arlington Heights Road by turning into the new lane.

## **Parking Evaluation**

The Village of Arlington Heights requires parking for townhomes be provided at a ratio of two spaces per unit. This equates to a total of 96 spaces required. The proposed development will provide 96 garage spaces, 96 driveway spaces, and 10 guest spaces for a total of 202 spaces. Additionally, the proposed 202 parking spaces exceeds the number of spaces required by the rates published in the ITE *Parking Generation Manual*, 4<sup>th</sup> Edition, which requires a total of 66 spaces at a ratio of 1.38 spaces per unit. As such, the proposed parking supply will be adequate in meeting the parking needs of the proposed development.

## Conclusion

Based on the preceding analyses and recommendations, the following conclusions have been made:

- The development is well located with respect to the area roadway system.
- The development will generate a low volume of traffic. A total of 29 and 33 trips are estimated to be generated during the weekday morning and weekday evening peak hours, respectively. As a result, the development will not have a significant impact on area roadways.
- The proposed accesses on Old Arlington Heights Road and Country Lane will ensure that efficient and flexible access is provided to the proposed development.
- The proposed parking supply of 202 spaces will be adequate in accommodating the peak parking demand of the proposed development.

# Appendix

-CMAP Traffic Projections -Traffic Count Summary Sheets -Preliminary Site Plan -Level of Service Criteria -Capacity Analysis Sheets **CMAP Traffic Projections** 



233 South Wacker Drive Suite 800 Chicago, Illinois 60606

312 454 0400 www.cmap.illinois.gov

April 29, 2016

Nicholas Butler Consultant Kenig, Lindgren, O'Hara, and Aboona, Inc. 9575 West Higgins Road Suite 400 Rosemont, IL 60018

#### Subject: Old Arlington Heights Road - Dundee Road - Arlington Heights Road Cook County DOTH

Dear Mr. Butler:

In response to a request made on your behalf and dated April 29, 2016, we have developed year 2040 average daily traffic (ADT) projections for the subject location.

| ROAD SEGMENT                               | Year 2040 ADT |
|--------------------------------------------|---------------|
| Arlington Heights Road                     | 22,000        |
| Dundee Road east of Arlington Heights Road | 28,200        |
| Dundee Road west of Arlington Heights Road | 24,500        |

Traffic projections are developed using existing ADT data provided in the request letter and the results from the March 2016 CMAP Travel Demand Analysis. The regional travel model uses CMAP 2040 socioeconomic projections and assumes the implementation of the GO TO 2040 Comprehensive Regional Plan for the Northeastern Illinois area.

If you have any questions, please call me at (312) 386-8806.

Sincerely,

Jose Rodriguez, PTP, AICP Senior Planner, Research & Analysis

cc: Yonan (Cook County DOTH) S:\AdminGroups\ResearchAnalysis\SmallAreaTrafficForecasts\_CY16\ArlingtonHeights\ck-33-16\ck-33-16.docx **Traffic Count Summary Sheets** 



Rosemont, Illinois, United States 60018 (847)518-9990 Count Name: Arlington Heights and Old Arlington Heights Site Code: Start Date: 04/19/2016 Page No: 1

#### Turning Movement Data

|                         |        |      | Univers | ity Drive |      |               |        | Old  | d Arlington | Heights Ro | bad  |               |        | ,    | Arlington H | eights Roa | d    |               |        |      | Arlington H | eights Roa | d    |               |            |
|-------------------------|--------|------|---------|-----------|------|---------------|--------|------|-------------|------------|------|---------------|--------|------|-------------|------------|------|---------------|--------|------|-------------|------------|------|---------------|------------|
| Ctart Time              |        |      | East    | bound     |      |               |        |      | West        | bound      |      |               |        |      | North       | bound      |      |               |        |      | South       | bound      |      |               |            |
| Start Time              | U-Turn | Left | Thru    | Right     | Peds | App.<br>Total | U-Turn | Left | Thru        | Right      | Peds | App.<br>Total | U-Turn | Left | Thru        | Right      | Peds | App.<br>Total | U-Turn | Left | Thru        | Right      | Peds | App.<br>Total | Int. Total |
| 7:00 AM                 | 0      | 27   | 13      | 7         | 0    | 47            | 0      | 31   | 12          | 13         | 0    | 56            | 0      | 19   | 245         | 23         | 0    | 287           | 0      | 2    | 155         | 11         | 0    | 168           | 558        |
| 7:15 AM                 | 0      | 10   | 13      | 15        | 0    | 38            | 0      | 34   | 8           | 8          | 0    | 50            | 0      | 17   | 168         | 28         | 0    | 213           | 0      | 1    | 228         | 16         | 0    | 245           | 546        |
| 7:30 AM                 | 0      | 7    | 7       | 15        | 0    | 29            | 0      | 50   | 15          | 9          | 0    | 74            | 0      | 20   | 133         | 29         | 0    | 182           | 0      | 1    | 177         | 8          | 0    | 186           | 471        |
| 7:45 AM                 | 0      | 5    | 10      | 14        | 0    | 29            | 0      | 29   | 17          | 5          | 0    | 51            | 0      | 41   | 156         | 30         | 0    | 227           | 0      | 0    | 166         | 10         | 0    | 176           | 483        |
| Hourly Total            | 0      | 49   | 43      | 51        | 0    | 143           | 0      | 144  | 52          | 35         | 0    | 231           | 0      | 97   | 702         | 110        | 0    | 909           | 0      | 4    | 726         | 45         | 0    | 775           | 2058       |
| 8:00 AM                 | 0      | 4    | 11      | 14        | 0    | 29            | 0      | 38   | 12          | 6          | 0    | 56            | 0      | 24   | 132         | 35         | 0    | 191           | 0      | 2    | 154         | 5          | 0    | 161           | 437        |
| 8:15 AM                 | 0      | 9    | 10      | 8         | 0    | 27            | 0      | 27   | 6           | 3          | 0    | 36            | 0      | 23   | 136         | 42         | 0    | 201           | 0      | 3    | 163         | 10         | 0    | 176           | 440        |
| 8:30 AM                 | 0      | 8    | 4       | 10        | 0    | 22            | 0      | 56   | 6           | 11         | 0    | 73            | 0      | 20   | 160         | 29         | 0    | 209           | 0      | 5    | 161         | 9          | 0    | 175           | 479        |
| 8:45 AM                 | 0      | 11   | 12      | 17        | 0    | 40            | 0      | 42   | 14          | 5          | 0    | 61            | 0      | 25   | 163         | 36         | 0    | 224           | 0      | 4    | 156         | 14         | 0    | 174           | 499        |
| Hourly Total            | 0      | 32   | 37      | 49        | 0    | 118           | 0      | 163  | 38          | 25         | 0    | 226           | 0      | 92   | 591         | 142        | 0    | 825           | 0      | 14   | 634         | 38         | 0    | 686           | 1855       |
| *** BREAK ***           | -      | -    | -       | -         | -    | -             | -      | -    | -           | -          | -    | -             | -      | -    | -           | -          | -    | -             | -      | -    | -           | -          | -    | -             | -          |
| 4:00 PM                 | 0      | 14   | 10      | 17        | 0    | 41            | 0      | 42   | 12          | 8          | 0    | 62            | 0      | 21   | 215         | 43         | 0    | 279           | 1      | 5    | 176         | 6          | 0    | 188           | 570        |
| 4:15 PM                 | 0      | 7    | 8       | 20        | 0    | 35            | 0      | 37   | 4           | 7          | 0    | 48            | 0      | 24   | 218         | 51         | 0    | 293           | 1      | 6    | 172         | 16         | 0    | 195           | 571        |
| 4:30 PM                 | 0      | 24   | 16      | 38        | 0    | 78            | 0      | 37   | 8           | 7          | 0    | 52            | 0      | 19   | 225         | 52         | 0    | 296           | 0      | 8    | 197         | 8          | 0    | 213           | 639        |
| 4:45 PM                 | 0      | 13   | 6       | 33        | 0    | 52            | 0      | 54   | 20          | 9          | 0    | 83            | 0      | 30   | 199         | 52         | 0    | 281           | 0      | 6    | 222         | 12         | 0    | 240           | 656        |
| Hourly Total            | 0      | 58   | 40      | 108       | 0    | 206           | 0      | 170  | 44          | 31         | 0    | 245           | 0      | 94   | 857         | 198        | 0    | 1149          | 2      | 25   | 767         | 42         | 0    | 836           | 2436       |
| 5:00 PM                 | 0      | 26   | 25      | 63        | 0    | 114           | 0      | 64   | 18          | 3          | 0    | 85            | 0      | 17   | 212         | 46         | 0    | 275           | 0      | 4    | 211         | 11         | 0    | 226           | 700        |
| 5:15 PM                 | 0      | 16   | 17      | 20        | 0    | 53            | 0      | 68   | 14          | 6          | 0    | 88            | 0      | 23   | 245         | 54         | 0    | 322           | 0      | 4    | 185         | 13         | 0    | 202           | 665        |
| 5:30 PM                 | 0      | 5    | 11      | 20        | 0    | 36            | 0      | 56   | 13          | 6          | 0    | 75            | 0      | 15   | 222         | 58         | 0    | 295           | 0      | 9    | 206         | 9          | 0    | 224           | 630        |
| 5:45 PM                 | 0      | 6    | 7       | 20        | 0    | 33            | 0      | 53   | 8           | 4          | 0    | 65            | 0      | 20   | 245         | 42         | 0    | 307           | 0      | 4    | 189         | 9          | 0    | 202           | 607        |
| Hourly Total            | 0      | 53   | 60      | 123       | 0    | 236           | 0      | 241  | 53          | 19         | 0    | 313           | 0      | 75   | 924         | 200        | 0    | 1199          | 0      | 21   | 791         | 42         | 0    | 854           | 2602       |
| Grand Total             | 0      | 192  | 180     | 331       | 0    | 703           | 0      | 718  | 187         | 110        | 0    | 1015          | 0      | 358  | 3074        | 650        | 0    | 4082          | 2      | 64   | 2918        | 167        | 0    | 3151          | 8951       |
| Approach %              | 0.0    | 27.3 | 25.6    | 47.1      | -    | -             | 0.0    | 70.7 | 18.4        | 10.8       | -    | -             | 0.0    | 8.8  | 75.3        | 15.9       | -    | -             | 0.1    | 2.0  | 92.6        | 5.3        | -    | -             | -          |
| Total %                 | 0.0    | 2.1  | 2.0     | 3.7       | -    | 7.9           | 0.0    | 8.0  | 2.1         | 1.2        | -    | 11.3          | 0.0    | 4.0  | 34.3        | 7.3        | -    | 45.6          | 0.0    | 0.7  | 32.6        | 1.9        | -    | 35.2          | -          |
| Lights                  | 0      | 184  | 178     | 316       | -    | 678           | 0      | 701  | 186         | 109        | -    | 996           | 0      | 351  | 3002        | 636        | -    | 3989          | 2      | 62   | 2846        | 160        | -    | 3070          | 8733       |
| % Lights                | -      | 95.8 | 98.9    | 95.5      | -    | 96.4          | -      | 97.6 | 99.5        | 99.1       | -    | 98.1          | -      | 98.0 | 97.7        | 97.8       | -    | 97.7          | 100.0  | 96.9 | 97.5        | 95.8       | -    | 97.4          | 97.6       |
| Buses                   | 0      | 1    | 1       | 1         | -    | 3             | 0      | 7    | 0           | 1          | -    | 8             | 0      | 0    | 24          | 8          | -    | 32            | 0      | 1    | 22          | 1          | -    | 24            | 67         |
| % Buses                 | -      | 0.5  | 0.6     | 0.3       | -    | 0.4           | -      | 1.0  | 0.0         | 0.9        | -    | 0.8           | -      | 0.0  | 0.8         | 1.2        | -    | 0.8           | 0.0    | 1.6  | 0.8         | 0.6        | -    | 0.8           | 0.7        |
| Single-Unit Trucks      | 0      | 6    | 1       | 12        | -    | 19            | 0      | 9    | 1           | 0          | -    | 10            | 0      | 7    | 39          | 6          | -    | 52            | 0      | 0    | 41          | 2          | -    | 43            | 124        |
| % Single-Unit<br>Trucks | -      | 3.1  | 0.6     | 3.6       | -    | 2.7           | -      | 1.3  | 0.5         | 0.0        | -    | 1.0           | -      | 2.0  | 1.3         | 0.9        | -    | 1.3           | 0.0    | 0.0  | 1.4         | 1.2        | -    | 1.4           | 1.4        |
| Articulated Trucks      | 0      | 1    | 0       | 2         | -    | 3             | 0      | 1    | 0           | 0          | -    | 1             | 0      | 0    | 9           | 0          | -    | 9             | 0      | 1    | 9           | 4          | -    | 14            | 27         |
| % Articulated<br>Trucks | -      | 0.5  | 0.0     | 0.6       | -    | 0.4           | -      | 0.1  | 0.0         | 0.0        | -    | 0.1           | -      | 0.0  | 0.3         | 0.0        | -    | 0.2           | 0.0    | 1.6  | 0.3         | 2.4        | -    | 0.4           | 0.3        |
| Bicycles on Road        | 0      | 0    | 0       | 0         | -    | 0             | 0      | 0    | 0           | 0          | -    | 0             | 0      | 0    | 0           | 0          | -    | 0             | 0      | 0    | 0           | 0          | -    | 0             | 0          |
| % Bicycles on<br>Road   | -      | 0.0  | 0.0     | 0.0       | -    | 0.0           | -      | 0.0  | 0.0         | 0.0        | -    | 0.0           | -      | 0.0  | 0.0         | 0.0        | -    | 0.0           | 0.0    | 0.0  | 0.0         | 0.0        | -    | 0.0           | 0.0        |
| Pedestrians             | -      | -    | -       | -         | 0    | -             | -      | -    | -           | -          | 0    | -             | -      | -    | -           | -          | 0    | -             | -      | -    | -           | -          | 0    | -             | -          |



Rosemont, Illinois, United States 60018 (847)518-9990 Count Name: Arlington Heights and Old Arlington Heights Site Code: Start Date: 04/19/2016 Page No: 4

## Turning Movement Peak Hour Data (7:00 AM)

|                         |        |       | Universi | ity Drive |      |               |        | Old   | d Arlington | Heights Ro | ad   |               |        | A     | Arlington H | eights Road | ł    |               |        | A     | Ington He | eights Road | ł    |               |            |
|-------------------------|--------|-------|----------|-----------|------|---------------|--------|-------|-------------|------------|------|---------------|--------|-------|-------------|-------------|------|---------------|--------|-------|-----------|-------------|------|---------------|------------|
| Chart Time              |        |       | East     | ound      |      |               |        |       | West        | oound      |      |               |        |       | North       | bound       |      |               |        |       | South     | bound       |      |               |            |
| Start Time              | U-Turn | Left  | Thru     | Right     | Peds | App.<br>Total | U-Turn | Left  | Thru        | Right      | Peds | App.<br>Total | U-Turn | Left  | Thru        | Right       | Peds | App.<br>Total | U-Turn | Left  | Thru      | Right       | Peds | App.<br>Total | Int. Total |
| 7:00 AM                 | 0      | 27    | 13       | 7         | 0    | 47            | 0      | 31    | 12          | 13         | 0    | 56            | 0      | 19    | 245         | 23          | 0    | 287           | 0      | 2     | 155       | 11          | 0    | 168           | 558        |
| 7:15 AM                 | 0      | 10    | 13       | 15        | 0    | 38            | 0      | 34    | 8           | 8          | 0    | 50            | 0      | 17    | 168         | 28          | 0    | 213           | 0      | 1     | 228       | 16          | 0    | 245           | 546        |
| 7:30 AM                 | 0      | 7     | 7        | 15        | 0    | 29            | 0      | 50    | 15          | 9          | 0    | 74            | 0      | 20    | 133         | 29          | 0    | 182           | 0      | 1     | 177       | 8           | 0    | 186           | 471        |
| 7:45 AM                 | 0      | 5     | 10       | 14        | 0    | 29            | 0      | 29    | 17          | 5          | 0    | 51            | 0      | 41    | 156         | 30          | 0    | 227           | 0      | 0     | 166       | 10          | 0    | 176           | 483        |
| Total                   | 0      | 49    | 43       | 51        | 0    | 143           | 0      | 144   | 52          | 35         | 0    | 231           | 0      | 97    | 702         | 110         | 0    | 909           | 0      | 4     | 726       | 45          | 0    | 775           | 2058       |
| Approach %              | 0.0    | 34.3  | 30.1     | 35.7      | -    | -             | 0.0    | 62.3  | 22.5        | 15.2       | -    | -             | 0.0    | 10.7  | 77.2        | 12.1        | -    | -             | 0.0    | 0.5   | 93.7      | 5.8         | -    | -             | -          |
| Total %                 | 0.0    | 2.4   | 2.1      | 2.5       | -    | 6.9           | 0.0    | 7.0   | 2.5         | 1.7        | -    | 11.2          | 0.0    | 4.7   | 34.1        | 5.3         | -    | 44.2          | 0.0    | 0.2   | 35.3      | 2.2         | -    | 37.7          | -          |
| PHF                     | 0.000  | 0.454 | 0.827    | 0.850     | -    | 0.761         | 0.000  | 0.720 | 0.765       | 0.673      | -    | 0.780         | 0.000  | 0.591 | 0.716       | 0.917       | -    | 0.792         | 0.000  | 0.500 | 0.796     | 0.703       | -    | 0.791         | 0.922      |
| Lights                  | 0      | 49    | 43       | 46        | -    | 138           | 0      | 143   | 52          | 35         | -    | 230           | 0      | 95    | 676         | 107         | -    | 878           | 0      | 4     | 701       | 43          | -    | 748           | 1994       |
| % Lights                | -      | 100.0 | 100.0    | 90.2      | -    | 96.5          | -      | 99.3  | 100.0       | 100.0      | -    | 99.6          | -      | 97.9  | 96.3        | 97.3        | -    | 96.6          | -      | 100.0 | 96.6      | 95.6        | -    | 96.5          | 96.9       |
| Buses                   | 0      | 0     | 0        | 0         | -    | 0             | 0      | 0     | 0           | 0          | -    | 0             | 0      | 0     | 11          | 2           | -    | 13            | 0      | 0     | 7         | 1           | -    | 8             | 21         |
| % Buses                 | -      | 0.0   | 0.0      | 0.0       | -    | 0.0           | -      | 0.0   | 0.0         | 0.0        | -    | 0.0           | -      | 0.0   | 1.6         | 1.8         | -    | 1.4           | -      | 0.0   | 1.0       | 2.2         | -    | 1.0           | 1.0        |
| Single-Unit Trucks      | 0      | 0     | 0        | 5         | -    | 5             | 0      | 0     | 0           | 0          | -    | 0             | 0      | 2     | 13          | 1           | -    | 16            | 0      | 0     | 14        | 1           | -    | 15            | 36         |
| % Single-Unit<br>Trucks | -      | 0.0   | 0.0      | 9.8       | -    | 3.5           | -      | 0.0   | 0.0         | 0.0        | -    | 0.0           | -      | 2.1   | 1.9         | 0.9         | -    | 1.8           | -      | 0.0   | 1.9       | 2.2         | -    | 1.9           | 1.7        |
| Articulated Trucks      | 0      | 0     | 0        | 0         | -    | 0             | 0      | 1     | 0           | 0          | -    | 1             | 0      | 0     | 2           | 0           | -    | 2             | 0      | 0     | 4         | 0           | -    | 4             | 7          |
| % Articulated<br>Trucks | -      | 0.0   | 0.0      | 0.0       | -    | 0.0           | -      | 0.7   | 0.0         | 0.0        | -    | 0.4           | -      | 0.0   | 0.3         | 0.0         | -    | 0.2           | -      | 0.0   | 0.6       | 0.0         | -    | 0.5           | 0.3        |
| Bicycles on Road        | 0      | 0     | 0        | 0         | -    | 0             | 0      | 0     | 0           | 0          | -    | 0             | 0      | 0     | 0           | 0           | -    | 0             | 0      | 0     | 0         | 0           | -    | 0             | 0          |
| % Bicycles on<br>Road   | -      | 0.0   | 0.0      | 0.0       | -    | 0.0           | -      | 0.0   | 0.0         | 0.0        | -    | 0.0           | -      | 0.0   | 0.0         | 0.0         | -    | 0.0           | -      | 0.0   | 0.0       | 0.0         | -    | 0.0           | 0.0        |
| Pedestrians             | -      | -     | -        | -         | 0    | -             | -      | -     | -           | -          | 0    | -             | -      | -     | -           | -           | 0    | -             | -      | -     | -         | -           | 0    | -             | -          |
| % Pedestrians           | -      | -     | -        | -         | -    | -             | -      | -     | -           | -          | -    | -             | -      | -     | -           | -           | -    | -             | -      | -     | -         | -           | -    | -             | -          |



Rosemont, Illinois, United States 60018 (847)518-9990 Count Name: Arlington Heights and Old Arlington Heights Site Code: Start Date: 04/19/2016 Page No: 6

## Turning Movement Peak Hour Data (5:00 PM)

|                         |        |       | Universi | ity Drive |      |               |        | Old   | d Arlington | Heights Ro | ad   |               |        | A     | Arlington H | eights Road | ł    |               |        | A     | Ington He | eights Road | ł    |               |            |
|-------------------------|--------|-------|----------|-----------|------|---------------|--------|-------|-------------|------------|------|---------------|--------|-------|-------------|-------------|------|---------------|--------|-------|-----------|-------------|------|---------------|------------|
|                         |        |       | Eastb    | ound      |      |               |        |       | West        | bound      |      |               |        |       | North       | bound       |      |               |        |       | South     | bound       |      |               |            |
| Start Time              | U-Turn | Left  | Thru     | Right     | Peds | App.<br>Total | U-Turn | Left  | Thru        | Right      | Peds | App.<br>Total | U-Turn | Left  | Thru        | Right       | Peds | App.<br>Total | U-Turn | Left  | Thru      | Right       | Peds | App.<br>Total | Int. Total |
| 5:00 PM                 | 0      | 26    | 25       | 63        | 0    | 114           | 0      | 64    | 18          | 3          | 0    | 85            | 0      | 17    | 212         | 46          | 0    | 275           | 0      | 4     | 211       | 11          | 0    | 226           | 700        |
| 5:15 PM                 | 0      | 16    | 17       | 20        | 0    | 53            | 0      | 68    | 14          | 6          | 0    | 88            | 0      | 23    | 245         | 54          | 0    | 322           | 0      | 4     | 185       | 13          | 0    | 202           | 665        |
| 5:30 PM                 | 0      | 5     | 11       | 20        | 0    | 36            | 0      | 56    | 13          | 6          | 0    | 75            | 0      | 15    | 222         | 58          | 0    | 295           | 0      | 9     | 206       | 9           | 0    | 224           | 630        |
| 5:45 PM                 | 0      | 6     | 7        | 20        | 0    | 33            | 0      | 53    | 8           | 4          | 0    | 65            | 0      | 20    | 245         | 42          | 0    | 307           | 0      | 4     | 189       | 9           | 0    | 202           | 607        |
| Total                   | 0      | 53    | 60       | 123       | 0    | 236           | 0      | 241   | 53          | 19         | 0    | 313           | 0      | 75    | 924         | 200         | 0    | 1199          | 0      | 21    | 791       | 42          | 0    | 854           | 2602       |
| Approach %              | 0.0    | 22.5  | 25.4     | 52.1      | -    | -             | 0.0    | 77.0  | 16.9        | 6.1        | -    | -             | 0.0    | 6.3   | 77.1        | 16.7        | -    | -             | 0.0    | 2.5   | 92.6      | 4.9         | -    | -             | -          |
| Total %                 | 0.0    | 2.0   | 2.3      | 4.7       | -    | 9.1           | 0.0    | 9.3   | 2.0         | 0.7        | -    | 12.0          | 0.0    | 2.9   | 35.5        | 7.7         | -    | 46.1          | 0.0    | 0.8   | 30.4      | 1.6         | -    | 32.8          | -          |
| PHF                     | 0.000  | 0.510 | 0.600    | 0.488     | -    | 0.518         | 0.000  | 0.886 | 0.736       | 0.792      | -    | 0.889         | 0.000  | 0.815 | 0.943       | 0.862       | -    | 0.931         | 0.000  | 0.583 | 0.937     | 0.808       | -    | 0.945         | 0.929      |
| Lights                  | 0      | 53    | 60       | 121       | -    | 234           | 0      | 238   | 53          | 18         | -    | 309           | 0      | 74    | 912         | 199         | -    | 1185          | 0      | 21    | 782       | 40          | -    | 843           | 2571       |
| % Lights                | -      | 100.0 | 100.0    | 98.4      | -    | 99.2          | -      | 98.8  | 100.0       | 94.7       | -    | 98.7          | -      | 98.7  | 98.7        | 99.5        | -    | 98.8          | -      | 100.0 | 98.9      | 95.2        | -    | 98.7          | 98.8       |
| Buses                   | 0      | 0     | 0        | 0         | -    | 0             | 0      | 1     | 0           | 1          | -    | 2             | 0      | 0     | 2           | 0           | -    | 2             | 0      | 0     | 2         | 0           | -    | 2             | 6          |
| % Buses                 | -      | 0.0   | 0.0      | 0.0       | -    | 0.0           | -      | 0.4   | 0.0         | 5.3        | -    | 0.6           | -      | 0.0   | 0.2         | 0.0         | -    | 0.2           | -      | 0.0   | 0.3       | 0.0         | -    | 0.2           | 0.2        |
| Single-Unit Trucks      | 0      | 0     | 0        | 1         | -    | 1             | 0      | 2     | 0           | 0          | -    | 2             | 0      | 1     | 8           | 1           | -    | 10            | 0      | 0     | 5         | 0           | -    | 5             | 18         |
| % Single-Unit<br>Trucks | -      | 0.0   | 0.0      | 0.8       | -    | 0.4           | -      | 0.8   | 0.0         | 0.0        | -    | 0.6           | -      | 1.3   | 0.9         | 0.5         | -    | 0.8           | -      | 0.0   | 0.6       | 0.0         | -    | 0.6           | 0.7        |
| Articulated Trucks      | 0      | 0     | 0        | 1         | -    | 1             | 0      | 0     | 0           | 0          | -    | 0             | 0      | 0     | 2           | 0           | -    | 2             | 0      | 0     | 2         | 2           | -    | 4             | 7          |
| % Articulated<br>Trucks | -      | 0.0   | 0.0      | 0.8       | -    | 0.4           | -      | 0.0   | 0.0         | 0.0        | -    | 0.0           | -      | 0.0   | 0.2         | 0.0         | -    | 0.2           | -      | 0.0   | 0.3       | 4.8         | -    | 0.5           | 0.3        |
| Bicycles on Road        | 0      | 0     | 0        | 0         | -    | 0             | 0      | 0     | 0           | 0          | -    | 0             | 0      | 0     | 0           | 0           | -    | 0             | 0      | 0     | 0         | 0           | -    | 0             | 0          |
| % Bicycles on<br>Road   | -      | 0.0   | 0.0      | 0.0       | -    | 0.0           | -      | 0.0   | 0.0         | 0.0        | -    | 0.0           | -      | 0.0   | 0.0         | 0.0         | -    | 0.0           | -      | 0.0   | 0.0       | 0.0         | -    | 0.0           | 0.0        |
| Pedestrians             | -      | -     | -        | -         | 0    | -             | -      | -     | -           | -          | 0    | -             | -      | -     | -           | -           | 0    | -             | -      | -     | -         | -           | 0    | -             | -          |
| % Pedestrians           | -      | -     | -        | -         | -    | -             | -      | -     | -           | -          | -    | -             | -      | -     | -           | -           | -    | -             | -      | -     | -         | -           | -    | -             | -          |



Rosemont, Illinois, United States 60018 (847)518-9990 Count Name: Country and Old Arlington Heights Site Code: Start Date: 04/19/2016 Page No: 1

#### Turning Movement Data

|                         |        |       | Counti<br>Fast | y Lane |      |               |        |      | Miller<br>West | Lane  | -    |               |        | Old   | d Arlington<br>North | Heights Ro | bad  |               |        | OI   | d Arlington<br>South | Heights Ro | bad  |               |            |
|-------------------------|--------|-------|----------------|--------|------|---------------|--------|------|----------------|-------|------|---------------|--------|-------|----------------------|------------|------|---------------|--------|------|----------------------|------------|------|---------------|------------|
| Start Time              | U-Turn | Left  | Thru           | Right  | Peds | App.<br>Total | U-Turn | Left | Thru           | Right | Peds | App.<br>Total | U-Turn | Left  | Thru                 | Right      | Peds | App.<br>Total | U-Turn | Left | Thru                 | Right      | Peds | App.<br>Total | Int. Total |
| 7:00 AM                 | 0      | 0     | 0              | 0      | 0    | 0             | 0      | 3    | 0              | 6     | 0    | 9             | 0      | 1     | 41                   | 2          | 0    | 44            | 0      | 3    | 42                   | 0          | 0    | 45            | 98         |
| 7:15 AM                 | 0      | 0     | 0              | 3      | 0    | 3             | 0      | 6    | 0              | 13    | 0    | 19            | 0      | 1     | 49                   | 1          | 0    | 51            | 0      | 4    | 47                   | 2          | 0    | 53            | 126        |
| 7:30 AM                 | 0      | 0     | 0              | 0      | 0    | 0             | 0      | 4    | 0              | 6     | 2    | 10            | 0      | 1     | 36                   | 3          | 0    | 40            | 0      | 1    | 57                   | 2          | 0    | 60            | 110        |
| 7:45 AM                 | 0      | 1     | 0              | 0      | 0    | 1             | 0      | 2    | 0              | 10    | 0    | 12            | 0      | 3     | 43                   | 1          | 0    | 47            | 1      | 1    | 51                   | 3          | 0    | 56            | 116        |
| Hourly Total            | 0      | 1     | 0              | 3      | 0    | 4             | 0      | 15   | 0              | 35    | 2    | 50            | 0      | 6     | 169                  | 7          | 0    | 182           | 1      | 9    | 197                  | 7          | 0    | 214           | 450        |
| 8:00 AM                 | 0      | 1     | 0              | 1      | 0    | 2             | 0      | 2    | 1              | 9     | 0    | 12            | 0      | 4     | 50                   | 1          | 0    | 55            | 0      | 2    | 47                   | 2          | 0    | 51            | 120        |
| 8:15 AM                 | 0      | 0     | 0              | 0      | 0    | 0             | 0      | 1    | 0              | 5     | 0    | 6             | 0      | 2     | 57                   | 0          | 0    | 59            | 0      | 4    | 41                   | 1          | 0    | 46            | 111        |
| 8:30 AM                 | 0      | 0     | 0              | 1      | 0    | 1             | 0      | 7    | 0              | 8     | 0    | 15            | 0      | 3     | 31                   | 2          | 0    | 36            | 0      | 2    | 54                   | 3          | 0    | 59            | 111        |
| 8:45 AM                 | 0      | 0     | 0              | 1      | 0    | 1             | 0      | 6    | 0              | 4     | 0    | 10            | 0      | 3     | 45                   | 2          | 0    | 50            | 0      | 1    | 54                   | 7          | 0    | 62            | 123        |
| Hourly Total            | 0      | 1     | 0              | 3      | 0    | 4             | 0      | 16   | 1              | 26    | 0    | 43            | 0      | 12    | 183                  | 5          | 0    | 200           | 0      | 9    | 196                  | 13         | 0    | 218           | 465        |
| *** BREAK ***           | -      | -     | -              | -      | -    | -             | -      | -    | -              | -     | -    | -             | -      | -     | -                    | -          | -    | -             | -      | -    | -                    | -          | -    | -             | -          |
| 4:00 PM                 | 0      | 1     | 0              | 8      | 0    | 9             | 0      | 0    | 0              | 3     | 1    | 3             | 0      | 2     | 54                   | 0          | 0    | 56            | 0      | 11   | 51                   | 6          | 0    | 68            | 136        |
| 4:15 PM                 | 0      | 3     | 1              | 5      | 0    | 9             | 0      | 0    | 0              | 2     | 1    | 2             | 0      | 1     | 53                   | 6          | 0    | 60            | 0      | 5    | 50                   | 5          | 0    | 60            | 131        |
| 4:30 PM                 | 0      | 4     | 0              | 5      | 0    | 9             | 0      | 1    | 0              | 5     | 0    | 6             | 0      | 3     | 65                   | 5          | 0    | 73            | 0      | 2    | 50                   | 2          | 0    | 54            | 142        |
| 4:45 PM                 | 0      | 2     | 0              | 5      | 0    | 7             | 0      | 1    | 0              | 1     | 0    | 2             | 0      | 1     | 48                   | 8          | 0    | 57            | 0      | 5    | 65                   | 4          | 0    | 74            | 140        |
| Hourly Total            | 0      | 10    | 1              | 23     | 0    | 34            | 0      | 2    | 0              | 11    | 2    | 13            | 0      | 7     | 220                  | 19         | 0    | 246           | 0      | 23   | 216                  | 17         | 0    | 256           | 549        |
| 5:00 PM                 | 0      | 2     | 0              | 13     | 0    | 15            | 0      | 3    | 1              | 7     | 0    | 11            | 0      | 2     | 73                   | 3          | 0    | 78            | 0      | 3    | 79                   | 2          | 0    | 84            | 188        |
| 5:15 PM                 | 0      | 3     | 0              | 3      | 0    | 6             | 0      | 5    | 0              | 3     | 0    | 8             | 0      | 3     | 62                   | 4          | 0    | 69            | 0      | 6    | 82                   | 1          | 0    | 89            | 172        |
| 5:30 PM                 | 0      | 3     | 1              | 5      | 0    | 9             | 0      | 4    | 0              | 4     | 0    | 8             | 0      | 0     | 61                   | 8          | 0    | 69            | 0      | 12   | 65                   | 0          | 0    | 77            | 163        |
| 5:45 PM                 | 0      | 5     | 0              | 4      | 0    | 9             | 0      | 2    | 0              | 5     | 0    | 7             | 0      | 1     | 42                   | 3          | 0    | 46            | 0      | 9    | 64                   | 4          | 1    | 77            | 139        |
| Hourly Total            | 0      | 13    | 1              | 25     | 0    | 39            | 0      | 14   | 1              | 19    | 0    | 34            | 0      | 6     | 238                  | 18         | 0    | 262           | 0      | 30   | 290                  | 7          | 1    | 327           | 662        |
| Grand Total             | 0      | 25    | 2              | 54     | 0    | 81            | 0      | 47   | 2              | 91    | 4    | 140           | 0      | 31    | 810                  | 49         | 0    | 890           | 1      | 71   | 899                  | 44         | 1    | 1015          | 2126       |
| Approach %              | 0.0    | 30.9  | 2.5            | 66.7   | -    | -             | 0.0    | 33.6 | 1.4            | 65.0  | -    | -             | 0.0    | 3.5   | 91.0                 | 5.5        | -    | -             | 0.1    | 7.0  | 88.6                 | 4.3        | -    | -             | -          |
| Total %                 | 0.0    | 1.2   | 0.1            | 2.5    | -    | 3.8           | 0.0    | 2.2  | 0.1            | 4.3   | -    | 6.6           | 0.0    | 1.5   | 38.1                 | 2.3        | -    | 41.9          | 0.0    | 3.3  | 42.3                 | 2.1        | -    | 47.7          | -          |
| Lights                  | 0      | 25    | 1              | 53     | -    | 79            | 0      | 46   | 1              | 89    | -    | 136           | 0      | 31    | 790                  | 46         | -    | 867           | 1      | 68   | 883                  | 44         | -    | 996           | 2078       |
| % Lights                | -      | 100.0 | 50.0           | 98.1   | -    | 97.5          | -      | 97.9 | 50.0           | 97.8  | -    | 97.1          | -      | 100.0 | 97.5                 | 93.9       | -    | 97.4          | 100.0  | 95.8 | 98.2                 | 100.0      | -    | 98.1          | 97.7       |
| Buses                   | 0      | 0     | 0              | 0      | -    | 0             | 0      | 1    | 0              | 2     | -    | 3             | 0      | 0     | 9                    | 1          | -    | 10            | 0      | 2    | 6                    | 0          | -    | 8             | 21         |
| % Buses                 | -      | 0.0   | 0.0            | 0.0    | -    | 0.0           | -      | 2.1  | 0.0            | 2.2   | -    | 2.1           | -      | 0.0   | 1.1                  | 2.0        | -    | 1.1           | 0.0    | 2.8  | 0.7                  | 0.0        | -    | 0.8           | 1.0        |
| Single-Unit Trucks      | 0      | 0     | 0              | 0      | -    | 0             | 0      | 0    | 0              | 0     | -    | 0             | 0      | 0     | 10                   | 2          | -    | 12            | 0      | 1    | 10                   | 0          | -    | 11            | 23         |
| % Single-Unit<br>Trucks | -      | 0.0   | 0.0            | 0.0    | -    | 0.0           | -      | 0.0  | 0.0            | 0.0   | -    | 0.0           | -      | 0.0   | 1.2                  | 4.1        | -    | 1.3           | 0.0    | 1.4  | 1.1                  | 0.0        | -    | 1.1           | 1.1        |
| Articulated Trucks      | 0      | 0     | 0              | 1      | -    | 1             | 0      | 0    | 0              | 0     | -    | 0             | 0      | 0     | 1                    | 0          | -    | 1             | 0      | 0    | 0                    | 0          | -    | 0             | 2          |
| % Articulated<br>Trucks | -      | 0.0   | 0.0            | 1.9    | -    | 1.2           | -      | 0.0  | 0.0            | 0.0   | -    | 0.0           | -      | 0.0   | 0.1                  | 0.0        | -    | 0.1           | 0.0    | 0.0  | 0.0                  | 0.0        | -    | 0.0           | 0.1        |
| Bicycles on Road        | 0      | 0     | 1              | 0      | -    | 1             | 0      | 0    | 1              | 0     | -    | 1             | 0      | 0     | 0                    | 0          | -    | 0             | 0      | 0    | 0                    | 0          | -    | 0             | 2          |
| % Bicycles on<br>Road   | -      | 0.0   | 50.0           | 0.0    | -    | 1.2           | -      | 0.0  | 50.0           | 0.0   | -    | 0.7           | -      | 0.0   | 0.0                  | 0.0        | -    | 0.0           | 0.0    | 0.0  | 0.0                  | 0.0        | -    | 0.0           | 0.1        |
| Pedestrians             | -      | -     | -              | -      | 0    | -             | -      | -    | -              | -     | 4    | -             | -      | -     | -                    | -          | 0    | -             | -      | -    | -                    | -          | 1    | -             | -          |



Rosemont, Illinois, United States 60018 (847)518-9990 Count Name: Country and Old Arlington Heights Site Code: Start Date: 04/19/2016 Page No: 4

#### Turning Movement Peak Hour Data (7:00 AM)

|                         |        |       | Counti<br>Eastt | ry Lane<br>oound |      |               |        |       | Miller | r Lane<br>bound |       |               |        | OI    | d Arlington<br>North | Heights Ro | bad  |               |        | Old   | d Arlington<br>South | Heights Ro | bad  |               |            |
|-------------------------|--------|-------|-----------------|------------------|------|---------------|--------|-------|--------|-----------------|-------|---------------|--------|-------|----------------------|------------|------|---------------|--------|-------|----------------------|------------|------|---------------|------------|
| Start Time              | U-Turn | Left  | Thru            | Right            | Peds | App.<br>Total | U-Turn | Left  | Thru   | Right           | Peds  | App.<br>Total | U-Turn | Left  | Thru                 | Right      | Peds | App.<br>Total | U-Turn | Left  | Thru                 | Right      | Peds | App.<br>Total | Int. Total |
| 7:00 AM                 | 0      | 0     | 0               | 0                | 0    | 0             | 0      | 3     | 0      | 6               | 0     | 9             | 0      | 1     | 41                   | 2          | 0    | 44            | 0      | 3     | 42                   | 0          | 0    | 45            | 98         |
| 7:15 AM                 | 0      | 0     | 0               | 3                | 0    | 3             | 0      | 6     | 0      | 13              | 0     | 19            | 0      | 1     | 49                   | 1          | 0    | 51            | 0      | 4     | 47                   | 2          | 0    | 53            | 126        |
| 7:30 AM                 | 0      | 0     | 0               | 0                | 0    | 0             | 0      | 4     | 0      | 6               | 2     | 10            | 0      | 1     | 36                   | 3          | 0    | 40            | 0      | 1     | 57                   | 2          | 0    | 60            | 110        |
| 7:45 AM                 | 0      | 1     | 0               | 0                | 0    | 1             | 0      | 2     | 0      | 10              | 0     | 12            | 0      | 3     | 43                   | 1          | 0    | 47            | 1      | 1     | 51                   | 3          | 0    | 56            | 116        |
| Total                   | 0      | 1     | 0               | 3                | 0    | 4             | 0      | 15    | 0      | 35              | 2     | 50            | 0      | 6     | 169                  | 7          | 0    | 182           | 1      | 9     | 197                  | 7          | 0    | 214           | 450        |
| Approach %              | 0.0    | 25.0  | 0.0             | 75.0             | -    | -             | 0.0    | 30.0  | 0.0    | 70.0            | -     | -             | 0.0    | 3.3   | 92.9                 | 3.8        | -    | -             | 0.5    | 4.2   | 92.1                 | 3.3        | -    | -             | -          |
| Total %                 | 0.0    | 0.2   | 0.0             | 0.7              | -    | 0.9           | 0.0    | 3.3   | 0.0    | 7.8             | -     | 11.1          | 0.0    | 1.3   | 37.6                 | 1.6        | -    | 40.4          | 0.2    | 2.0   | 43.8                 | 1.6        | -    | 47.6          | -          |
| PHF                     | 0.000  | 0.250 | 0.000           | 0.250            | -    | 0.333         | 0.000  | 0.625 | 0.000  | 0.673           | -     | 0.658         | 0.000  | 0.500 | 0.862                | 0.583      | -    | 0.892         | 0.250  | 0.563 | 0.864                | 0.583      | -    | 0.892         | 0.893      |
| Lights                  | 0      | 1     | 0               | 2                | -    | 3             | 0      | 15    | 0      | 33              | -     | 48            | 0      | 6     | 167                  | 5          | -    | 178           | 1      | 8     | 195                  | 7          | -    | 211           | 440        |
| % Lights                | -      | 100.0 | -               | 66.7             | -    | 75.0          | -      | 100.0 | -      | 94.3            | -     | 96.0          | -      | 100.0 | 98.8                 | 71.4       | -    | 97.8          | 100.0  | 88.9  | 99.0                 | 100.0      | -    | 98.6          | 97.8       |
| Buses                   | 0      | 0     | 0               | 0                | -    | 0             | 0      | 0     | 0      | 2               | -     | 2             | 0      | 0     | 1                    | 1          | -    | 2             | 0      | 1     | 1                    | 0          | -    | 2             | 6          |
| % Buses                 | -      | 0.0   | -               | 0.0              | -    | 0.0           | -      | 0.0   | -      | 5.7             | -     | 4.0           | -      | 0.0   | 0.6                  | 14.3       | -    | 1.1           | 0.0    | 11.1  | 0.5                  | 0.0        | -    | 0.9           | 1.3        |
| Single-Unit Trucks      | 0      | 0     | 0               | 0                | -    | 0             | 0      | 0     | 0      | 0               | -     | 0             | 0      | 0     | 1                    | 1          | -    | 2             | 0      | 0     | 1                    | 0          | -    | 1             | 3          |
| % Single-Unit<br>Trucks | -      | 0.0   | -               | 0.0              | -    | 0.0           | -      | 0.0   | -      | 0.0             | -     | 0.0           | -      | 0.0   | 0.6                  | 14.3       | -    | 1.1           | 0.0    | 0.0   | 0.5                  | 0.0        | -    | 0.5           | 0.7        |
| Articulated Trucks      | 0      | 0     | 0               | 1                | -    | 1             | 0      | 0     | 0      | 0               | -     | 0             | 0      | 0     | 0                    | 0          | -    | 0             | 0      | 0     | 0                    | 0          | -    | 0             | 1          |
| % Articulated<br>Trucks | -      | 0.0   | -               | 33.3             | -    | 25.0          | -      | 0.0   | -      | 0.0             | -     | 0.0           | -      | 0.0   | 0.0                  | 0.0        | -    | 0.0           | 0.0    | 0.0   | 0.0                  | 0.0        | -    | 0.0           | 0.2        |
| Bicycles on Road        | 0      | 0     | 0               | 0                | -    | 0             | 0      | 0     | 0      | 0               | -     | 0             | 0      | 0     | 0                    | 0          | -    | 0             | 0      | 0     | 0                    | 0          | -    | 0             | 0          |
| % Bicycles on<br>Road   | -      | 0.0   | -               | 0.0              | -    | 0.0           | -      | 0.0   | -      | 0.0             | -     | 0.0           | -      | 0.0   | 0.0                  | 0.0        | -    | 0.0           | 0.0    | 0.0   | 0.0                  | 0.0        | -    | 0.0           | 0.0        |
| Pedestrians             | -      | -     | -               | -                | 0    | -             | -      | -     | -      | -               | 2     | -             | -      | -     | -                    | -          | 0    | -             | -      | -     | -                    | -          | 0    | -             | -          |
| % Pedestrians           | -      | -     | -               | -                | -    | -             | -      | -     | -      | -               | 100.0 | -             | -      | -     | -                    | -          | -    | -             | -      | -     | -                    | -          | -    | -             | -          |



Rosemont, Illinois, United States 60018 (847)518-9990 Count Name: Country and Old Arlington Heights Site Code: Start Date: 04/19/2016 Page No: 6

## Turning Movement Peak Hour Data (5:00 PM)

|                         |        |       | Countr<br>Eastb | y Lane<br>oound |      |               |        |       | Miller<br>West | Lane<br>bound |      |               |        | Old   | d Arlington<br>North | Heights Ro | ad   |               |        | Old   | d Arlington<br>Southl | Heights Ro<br>bound | ad    |               |            |
|-------------------------|--------|-------|-----------------|-----------------|------|---------------|--------|-------|----------------|---------------|------|---------------|--------|-------|----------------------|------------|------|---------------|--------|-------|-----------------------|---------------------|-------|---------------|------------|
| Start Time              | U-Turn | Left  | Thru            | Right           | Peds | App.<br>Total | U-Turn | Left  | Thru           | Right         | Peds | App.<br>Total | U-Turn | Left  | Thru                 | Right      | Peds | App.<br>Total | U-Turn | Left  | Thru                  | Right               | Peds  | App.<br>Total | Int. Total |
| 5:00 PM                 | 0      | 2     | 0               | 13              | 0    | 15            | 0      | 3     | 1              | 7             | 0    | 11            | 0      | 2     | 73                   | 3          | 0    | 78            | 0      | 3     | 79                    | 2                   | 0     | 84            | 188        |
| 5:15 PM                 | 0      | 3     | 0               | 3               | 0    | 6             | 0      | 5     | 0              | 3             | 0    | 8             | 0      | 3     | 62                   | 4          | 0    | 69            | 0      | 6     | 82                    | 1                   | 0     | 89            | 172        |
| 5:30 PM                 | 0      | 3     | 1               | 5               | 0    | 9             | 0      | 4     | 0              | 4             | 0    | 8             | 0      | 0     | 61                   | 8          | 0    | 69            | 0      | 12    | 65                    | 0                   | 0     | 77            | 163        |
| 5:45 PM                 | 0      | 5     | 0               | 4               | 0    | 9             | 0      | 2     | 0              | 5             | 0    | 7             | 0      | 1     | 42                   | 3          | 0    | 46            | 0      | 9     | 64                    | 4                   | 1     | 77            | 139        |
| Total                   | 0      | 13    | 1               | 25              | 0    | 39            | 0      | 14    | 1              | 19            | 0    | 34            | 0      | 6     | 238                  | 18         | 0    | 262           | 0      | 30    | 290                   | 7                   | 1     | 327           | 662        |
| Approach %              | 0.0    | 33.3  | 2.6             | 64.1            | -    | -             | 0.0    | 41.2  | 2.9            | 55.9          | -    | -             | 0.0    | 2.3   | 90.8                 | 6.9        | -    | -             | 0.0    | 9.2   | 88.7                  | 2.1                 | -     | -             | -          |
| Total %                 | 0.0    | 2.0   | 0.2             | 3.8             | -    | 5.9           | 0.0    | 2.1   | 0.2            | 2.9           | -    | 5.1           | 0.0    | 0.9   | 36.0                 | 2.7        | -    | 39.6          | 0.0    | 4.5   | 43.8                  | 1.1                 | -     | 49.4          | -          |
| PHF                     | 0.000  | 0.650 | 0.250           | 0.481           | -    | 0.650         | 0.000  | 0.700 | 0.250          | 0.679         | -    | 0.773         | 0.000  | 0.500 | 0.815                | 0.563      | -    | 0.840         | 0.000  | 0.625 | 0.884                 | 0.438               | -     | 0.919         | 0.880      |
| Lights                  | 0      | 13    | 0               | 25              | -    | 38            | 0      | 14    | 1              | 19            | -    | 34            | 0      | 6     | 236                  | 18         | -    | 260           | 0      | 29    | 287                   | 7                   | -     | 323           | 655        |
| % Lights                | -      | 100.0 | 0.0             | 100.0           | -    | 97.4          | -      | 100.0 | 100.0          | 100.0         | -    | 100.0         | -      | 100.0 | 99.2                 | 100.0      | -    | 99.2          | -      | 96.7  | 99.0                  | 100.0               | -     | 98.8          | 98.9       |
| Buses                   | 0      | 0     | 0               | 0               | -    | 0             | 0      | 0     | 0              | 0             | -    | 0             | 0      | 0     | 0                    | 0          | -    | 0             | 0      | 1     | 1                     | 0                   | -     | 2             | 2          |
| % Buses                 | -      | 0.0   | 0.0             | 0.0             | -    | 0.0           | -      | 0.0   | 0.0            | 0.0           | -    | 0.0           | -      | 0.0   | 0.0                  | 0.0        | -    | 0.0           | -      | 3.3   | 0.3                   | 0.0                 | -     | 0.6           | 0.3        |
| Single-Unit Trucks      | 0      | 0     | 0               | 0               | -    | 0             | 0      | 0     | 0              | 0             | -    | 0             | 0      | 0     | 2                    | 0          | -    | 2             | 0      | 0     | 2                     | 0                   | -     | 2             | 4          |
| % Single-Unit<br>Trucks | -      | 0.0   | 0.0             | 0.0             | -    | 0.0           | -      | 0.0   | 0.0            | 0.0           | -    | 0.0           | -      | 0.0   | 0.8                  | 0.0        | -    | 0.8           | -      | 0.0   | 0.7                   | 0.0                 | -     | 0.6           | 0.6        |
| Articulated Trucks      | 0      | 0     | 0               | 0               | -    | 0             | 0      | 0     | 0              | 0             | -    | 0             | 0      | 0     | 0                    | 0          | -    | 0             | 0      | 0     | 0                     | 0                   | -     | 0             | 0          |
| % Articulated<br>Trucks | -      | 0.0   | 0.0             | 0.0             | -    | 0.0           | -      | 0.0   | 0.0            | 0.0           | -    | 0.0           | -      | 0.0   | 0.0                  | 0.0        | -    | 0.0           | -      | 0.0   | 0.0                   | 0.0                 | -     | 0.0           | 0.0        |
| Bicycles on Road        | 0      | 0     | 1               | 0               | -    | 1             | 0      | 0     | 0              | 0             | -    | 0             | 0      | 0     | 0                    | 0          | -    | 0             | 0      | 0     | 0                     | 0                   | -     | 0             | 1          |
| % Bicycles on<br>Road   | -      | 0.0   | 100.0           | 0.0             | -    | 2.6           | -      | 0.0   | 0.0            | 0.0           | -    | 0.0           | -      | 0.0   | 0.0                  | 0.0        | -    | 0.0           | -      | 0.0   | 0.0                   | 0.0                 | -     | 0.0           | 0.2        |
| Pedestrians             | -      | -     | -               | -               | 0    | -             | -      | -     | -              | -             | 0    | -             | -      | -     | -                    | -          | 0    | -             | -      | -     | -                     | -                   | 1     | -             | -          |
| % Pedestrians           | -      | -     | -               | -               | -    | -             | -      | -     | -              | -             | -    | -             | -      | -     | -                    | -          | -    | -             | -      | -     | -                     | -                   | 100.0 | -             | -          |



Rosemont, Illinois, United States 60018 (847)518-9990 Count Name: Dundee and Old Arlington Heights Site Code: Start Date: 04/19/2016 Page No: 1

#### Turning Movement Data

|                      |        |      | Dundee Road |      |            |        | •    | Dundee Road |      |            |        | Old A | Arlington Heights | Road  |            |            |
|----------------------|--------|------|-------------|------|------------|--------|------|-------------|------|------------|--------|-------|-------------------|-------|------------|------------|
|                      |        |      | Eastbound   |      |            |        |      | Westbound   |      |            |        |       | Northbound        |       |            |            |
| Start Time           | U-Turn | Thru | Right       | Peds | App. Total | U-Turn | Left | Thru        | Peds | App. Total | U-Turn | Left  | Right             | Peds  | App. Total | Int. Total |
| 7:00 AM              | 0      | 396  | 14          | 0    | 410        | 0      | 24   | 328         | 0    | 352        | 0      | 0     | 35                | 3     | 35         | 797        |
| 7:15 AM              | 0      | 436  | 25          | 0    | 461        | 0      | 20   | 276         | 0    | 296        | 0      | 0     | 43                | 0     | 43         | 800        |
| 7:30 AM              | 0      | 358  | 13          | 0    | 371        | 0      | 41   | 178         | 0    | 219        | 0      | 0     | 36                | 0     | 36         | 626        |
| 7:45 AM              | 0      | 384  | 13          | 0    | 397        | 0      | 37   | 165         | 0    | 202        | 0      | 1     | 34                | 0     | 35         | 634        |
| Hourly Total         | 0      | 1574 | 65          | 0    | 1639       | 0      | 122  | 947         | 0    | 1069       | 0      | 1     | 148               | 3     | 149        | 2857       |
| 8:00 AM              | 0      | 392  | 8           | 0    | 400        | 0      | 40   | 176         | 0    | 216        | 0      | 0     | 46                | 0     | 46         | 662        |
| 8:15 AM              | 0      | 322  | 9           | 0    | 331        | 0      | 37   | 209         | 0    | 246        | 0      | 0     | 49                | 0     | 49         | 626        |
| 8:30 AM              | 0      | 333  | 13          | 0    | 346        | 0      | 39   | 160         | 0    | 199        | 1      | 0     | 29                | 1     | 30         | 575        |
| 8:45 AM              | 0      | 331  | 8           | 0    | 339        | 0      | 42   | 194         | 0    | 236        | 0      | 0     | 38                | 1     | 38         | 613        |
| Hourly Total         | 0      | 1378 | 38          | 0    | 1416       | 0      | 158  | 739         | 0    | 897        | 1      | 0     | 162               | 2     | 163        | 2476       |
| *** BREAK ***        | -      | -    | -           | -    | -          | -      | -    | -           | -    | -          | -      | -     | -                 | -     | -          | -          |
| 4:00 PM              | 0      | 249  | 21          | 0    | 270        | 0      | 38   | 322         | 0    | 360        | 0      | 0     | 58                | 0     | 58         | 688        |
| 4:15 PM              | 0      | 258  | 24          | 0    | 282        | 0      | 31   | 349         | 0    | 380        | 0      | 0     | 58                | 0     | 58         | 720        |
| 4:30 PM              | 0      | 240  | 17          | 0    | 257        | 0      | 40   | 336         | 0    | 376        | 0      | 1     | 61                | 1     | 62         | 695        |
| 4:45 PM              | 0      | 281  | 20          | 0    | 301        | 0      | 48   | 309         | 0    | 357        | 0      | 0     | 50                | 1     | 50         | 708        |
| Hourly Total         | 0      | 1028 | 82          | 0    | 1110       | 0      | 157  | 1316        | 0    | 1473       | 0      | 1     | 227               | 2     | 228        | 2811       |
| 5:00 PM              | 0      | 268  | 19          | 0    | 287        | 0      | 56   | 363         | 0    | 419        | 0      | 0     | 75                | 0     | 75         | 781        |
| 5:15 PM              | 0      | 265  | 27          | 0    | 292        | 0      | 53   | 308         | 0    | 361        | 0      | 0     | 66                | 0     | 66         | 719        |
| 5:30 PM              | 0      | 252  | 25          | 0    | 277        | 0      | 46   | 340         | 0    | 386        | 0      | 0     | 54                | 0     | 54         | 717        |
| 5:45 PM              | 0      | 290  | 16          | 0    | 306        | 0      | 54   | 353         | 0    | 407        | 0      | 0     | 47                | 0     | 47         | 760        |
| Hourly Total         | 0      | 1075 | 87          | 0    | 1162       | 0      | 209  | 1364        | 0    | 1573       | 0      | 0     | 242               | 0     | 242        | 2977       |
| Grand Total          | 0      | 5055 | 272         | 0    | 5327       | 0      | 646  | 4366        | 0    | 5012       | 1      | 2     | 779               | 7     | 782        | 11121      |
| Approach %           | 0.0    | 94.9 | 5.1         | -    | -          | 0.0    | 12.9 | 87.1        | -    | -          | 0.1    | 0.3   | 99.6              | -     | -          | -          |
| Total %              | 0.0    | 45.5 | 2.4         | -    | 47.9       | 0.0    | 5.8  | 39.3        | -    | 45.1       | 0.0    | 0.0   | 7.0               | -     | 7.0        | -          |
| Lights               | 0      | 4948 | 267         | -    | 5215       | 0      | 632  | 4259        | -    | 4891       | 1      | 2     | 763               | -     | 766        | 10872      |
| % Lights             | -      | 97.9 | 98.2        | -    | 97.9       | -      | 97.8 | 97.5        | -    | 97.6       | 100.0  | 100.0 | 97.9              | -     | 98.0       | 97.8       |
| Buses                | 0      | 24   | 2           | -    | 26         | 0      | 3    | 14          | -    | 17         | 0      | 0     | 8                 | -     | 8          | 51         |
| % Buses              | -      | 0.5  | 0.7         | -    | 0.5        | -      | 0.5  | 0.3         | -    | 0.3        | 0.0    | 0.0   | 1.0               | -     | 1.0        | 0.5        |
| Single-Unit Trucks   | 0      | 54   | 3           | -    | 57         | 0      | 11   | 63          | -    | 74         | 0      | 0     | 7                 | -     | 7          | 138        |
| % Single-Unit Trucks | -      | 1.1  | 1.1         | -    | 1.1        | -      | 1.7  | 1.4         | -    | 1.5        | 0.0    | 0.0   | 0.9               | -     | 0.9        | 1.2        |
| Articulated Trucks   | 0      | 29   | 0           | -    | 29         | 0      | 0    | 30          | -    | 30         | 0      | 0     | 1                 | -     | 1          | 60         |
| % Articulated Trucks | -      | 0.6  | 0.0         | -    | 0.5        | -      | 0.0  | 0.7         | -    | 0.6        | 0.0    | 0.0   | 0.1               | -     | 0.1        | 0.5        |
| Bicycles on Road     | 0      | 0    | 0           | -    | 0          | 0      | 0    | 0           | -    | 0          | 0      | 0     | 0                 | -     | 0          | 0          |
| % Bicycles on Road   | -      | 0.0  | 0.0         | -    | 0.0        | -      | 0.0  | 0.0         | -    | 0.0        | 0.0    | 0.0   | 0.0               | -     | 0.0        | 0.0        |
| Pedestrians          | -      | -    | -           | 0    | -          | -      | -    | -           | 0    | -          | -      | -     | -                 | 7     | -          | -          |
| % Pedestrians        | -      | -    | -           | -    | -          | -      | -    | -           | -    | -          | -      | -     | -                 | 100.0 | -          | -          |



Rosemont, Illinois, United States 60018 (847)518-9990 Count Name: Dundee and Old Arlington Heights Site Code: Start Date: 04/19/2016 Page No: 3

#### Turning Movement Peak Hour Data (7:00 AM)

|                      |        |       | Dundee Road |      |             |        |       | Dundee Road | ,          | ,          |        | Old A | Arlington Heights | Road  |             |             |
|----------------------|--------|-------|-------------|------|-------------|--------|-------|-------------|------------|------------|--------|-------|-------------------|-------|-------------|-------------|
| Start Time           |        |       | Eastbound   | 5.   |             |        |       | vvestbound  | <b>.</b> . |            |        |       | Northbound        | 5.    |             |             |
|                      | U-Turn | I hru | Right       | Peds | App. I otal | U-Turn | Left  | I hru       | Peds       | App. Total | U-Turn | Left  | Right             | Peds  | App. I otal | Int. I otal |
| 7:00 AM              | 0      | 396   | 14          | 0    | 410         | 0      | 24    | 328         | 0          | 352        | 0      | 0     | 35                | 3     | 35          | 797         |
| 7:15 AM              | 0      | 436   | 25          | 0    | 461         | 0      | 20    | 276         | 0          | 296        | 0      | 0     | 43                | 0     | 43          | 800         |
| 7:30 AM              | 0      | 358   | 13          | 0    | 371         | 0      | 41    | 178         | 0          | 219        | 0      | 0     | 36                | 0     | 36          | 626         |
| 7:45 AM              | 0      | 384   | 13          | 0    | 397         | 0      | 37    | 165         | 0          | 202        | 0      | 1     | 34                | 0     | 35          | 634         |
| Total                | 0      | 1574  | 65          | 0    | 1639        | 0      | 122   | 947         | 0          | 1069       | 0      | 1     | 148               | 3     | 149         | 2857        |
| Approach %           | 0.0    | 96.0  | 4.0         | -    | -           | 0.0    | 11.4  | 88.6        | -          | -          | 0.0    | 0.7   | 99.3              | -     | -           | -           |
| Total %              | 0.0    | 55.1  | 2.3         | -    | 57.4        | 0.0    | 4.3   | 33.1        | -          | 37.4       | 0.0    | 0.0   | 5.2               | -     | 5.2         | -           |
| PHF                  | 0.000  | 0.903 | 0.650       | -    | 0.889       | 0.000  | 0.744 | 0.722       | -          | 0.759      | 0.000  | 0.250 | 0.860             | -     | 0.866       | 0.893       |
| Lights               | 0      | 1536  | 64          | -    | 1600        | 0      | 121   | 925         | -          | 1046       | 0      | 1     | 146               | -     | 147         | 2793        |
| % Lights             | -      | 97.6  | 98.5        | -    | 97.6        | -      | 99.2  | 97.7        | -          | 97.8       | -      | 100.0 | 98.6              | -     | 98.7        | 97.8        |
| Buses                | 0      | 11    | 0           | -    | 11          | 0      | 0     | 4           | -          | 4          | 0      | 0     | 1                 | -     | 1           | 16          |
| % Buses              | -      | 0.7   | 0.0         | -    | 0.7         | -      | 0.0   | 0.4         | -          | 0.4        | -      | 0.0   | 0.7               | -     | 0.7         | 0.6         |
| Single-Unit Trucks   | 0      | 15    | 1           | -    | 16          | 0      | 1     | 14          | -          | 15         | 0      | 0     | 1                 | -     | 1           | 32          |
| % Single-Unit Trucks | -      | 1.0   | 1.5         | -    | 1.0         | -      | 0.8   | 1.5         | -          | 1.4        | -      | 0.0   | 0.7               | -     | 0.7         | 1.1         |
| Articulated Trucks   | 0      | 12    | 0           | -    | 12          | 0      | 0     | 4           | -          | 4          | 0      | 0     | 0                 | -     | 0           | 16          |
| % Articulated Trucks | -      | 0.8   | 0.0         | -    | 0.7         | -      | 0.0   | 0.4         | -          | 0.4        | -      | 0.0   | 0.0               | -     | 0.0         | 0.6         |
| Bicycles on Road     | 0      | 0     | 0           | -    | 0           | 0      | 0     | 0           | -          | 0          | 0      | 0     | 0                 | -     | 0           | 0           |
| % Bicycles on Road   | -      | 0.0   | 0.0         | -    | 0.0         | -      | 0.0   | 0.0         | -          | 0.0        | _      | 0.0   | 0.0               | -     | 0.0         | 0.0         |
| Pedestrians          | -      | -     | -           | 0    | -           | -      | -     | -           | 0          | -          | -      | -     | -                 | 3     | -           | -           |
| % Pedestrians        | -      | -     | -           | -    | -           | -      | -     | -           | -          | -          | -      | -     | -                 | 100.0 | -           | -           |



Rosemont, Illinois, United States 60018 (847)518-9990 Count Name: Dundee and Old Arlington Heights Site Code: Start Date: 04/19/2016 Page No: 5

#### Turning Movement Peak Hour Data (5:00 PM)

|                      |        |       | Dundee Road |      |            | Ī      |       | Dundee Road |      |            |        | Old A | Arlington Heights | Road |            |            |
|----------------------|--------|-------|-------------|------|------------|--------|-------|-------------|------|------------|--------|-------|-------------------|------|------------|------------|
| Otest Times          |        |       | Eastbound   |      |            |        |       | Westbound   |      |            |        |       | Northbound        |      |            |            |
| Start Time           | U-Turn | Thru  | Right       | Peds | App. Total | U-Turn | Left  | Thru        | Peds | App. Total | U-Turn | Left  | Right             | Peds | App. Total | Int. Total |
| 5:00 PM              | 0      | 268   | 19          | 0    | 287        | 0      | 56    | 363         | 0    | 419        | 0      | 0     | 75                | 0    | 75         | 781        |
| 5:15 PM              | 0      | 265   | 27          | 0    | 292        | 0      | 53    | 308         | 0    | 361        | 0      | 0     | 66                | 0    | 66         | 719        |
| 5:30 PM              | 0      | 252   | 25          | 0    | 277        | 0      | 46    | 340         | 0    | 386        | 0      | 0     | 54                | 0    | 54         | 717        |
| 5:45 PM              | 0      | 290   | 16          | 0    | 306        | 0      | 54    | 353         | 0    | 407        | 0      | 0     | 47                | 0    | 47         | 760        |
| Total                | 0      | 1075  | 87          | 0    | 1162       | 0      | 209   | 1364        | 0    | 1573       | 0      | 0     | 242               | 0    | 242        | 2977       |
| Approach %           | 0.0    | 92.5  | 7.5         | -    | -          | 0.0    | 13.3  | 86.7        | -    | -          | 0.0    | 0.0   | 100.0             | -    | -          | -          |
| Total %              | 0.0    | 36.1  | 2.9         | -    | 39.0       | 0.0    | 7.0   | 45.8        | -    | 52.8       | 0.0    | 0.0   | 8.1               | -    | 8.1        | -          |
| PHF                  | 0.000  | 0.927 | 0.806       | -    | 0.949      | 0.000  | 0.933 | 0.939       | -    | 0.939      | 0.000  | 0.000 | 0.807             | -    | 0.807      | 0.953      |
| Lights               | 0      | 1064  | 86          | -    | 1150       | 0      | 206   | 1343        | -    | 1549       | 0      | 0     | 240               | -    | 240        | 2939       |
| % Lights             | -      | 99.0  | 98.9        | -    | 99.0       | -      | 98.6  | 98.5        | -    | 98.5       | -      | -     | 99.2              | -    | 99.2       | 98.7       |
| Buses                | 0      | 6     | 1           | -    | 7          | 0      | 0     | 0           | -    | 0          | 0      | 0     | 0                 | -    | 0          | 7          |
| % Buses              | -      | 0.6   | 1.1         | -    | 0.6        | -      | 0.0   | 0.0         | -    | 0.0        | -      | -     | 0.0               | -    | 0.0        | 0.2        |
| Single-Unit Trucks   | 0      | 2     | 0           | -    | 2          | 0      | 3     | 14          | -    | 17         | 0      | 0     | 2                 | -    | 2          | 21         |
| % Single-Unit Trucks | -      | 0.2   | 0.0         | -    | 0.2        | -      | 1.4   | 1.0         | -    | 1.1        | -      | -     | 0.8               | -    | 0.8        | 0.7        |
| Articulated Trucks   | 0      | 3     | 0           | -    | 3          | 0      | 0     | 7           | -    | 7          | 0      | 0     | 0                 | -    | 0          | 10         |
| % Articulated Trucks | -      | 0.3   | 0.0         | -    | 0.3        | -      | 0.0   | 0.5         | -    | 0.4        | -      | -     | 0.0               | -    | 0.0        | 0.3        |
| Bicycles on Road     | 0      | 0     | 0           | -    | 0          | 0      | 0     | 0           | -    | 0          | 0      | 0     | 0                 | -    | 0          | 0          |
| % Bicycles on Road   | -      | 0.0   | 0.0         | -    | 0.0        | -      | 0.0   | 0.0         | -    | 0.0        | -      | -     | 0.0               | -    | 0.0        | 0.0        |
| Pedestrians          | -      | -     | -           | 0    | -          | -      | -     | -           | 0    | -          | -      | -     | -                 | 0    | -          | -          |
| % Pedestrians        | -      | -     | -           | -    | -          | -      | -     | -           | -    | -          | -      | -     | -                 | -    | -          | -          |

**Preliminary Site Plan** 



## <u>PAVING LEGEND</u>



Bituminous Pavement - Heavy Duty Road -2" Hot Mix Asphalt Surface Course, Mix D, N50 -2 1/4" Hot Mix Asphalt Binder Course, IL-19, N50 -5" Hot Mix Asphalt Binder Course, N30 -4" CA-6 Crushed Aggregate Base Course

Bituminous Pavement - Standard Duty Road -1 1/2" Hot Mix Asphalt Surface Course, Mix D, N50 -2 1/4" Hot Mix Asphalt Binder Course, IL-19, N50 -6" CA-6 Crushed Aggregate Base Course

| 1 | ·  | •  |   | · |   |   | · |   | • |   | • |   | • |   | • |   | • |   | • |   | • |  |
|---|----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--|
|   |    | •  |   | • |   |   | • | · | • |   | • |   | • |   | • |   | • |   | • |   | • |  |
|   | ١. | ۰. | • |   | • | ľ |   | • |   | • |   | • |   | • |   | • |   | • |   | • |   |  |
|   |    | _  |   |   | _ |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
|   |    |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
|   |    |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
|   |    |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |  |
| 1 | -  | _  | _ | _ | - | _ | _ | _ | _ | _ | - |   | _ | _ | _ |   | _ |   | _ | _ | _ |  |

.

4 4 4 44

Bituminous Pavement - Driveway -1 1/2" Hot Mix Asphalt Surface Course, Mix D, N50 -6" CA-6 Crushed Aggregate Base Course

Concrete Sidewalk

-5" Portland Cement Concrete (8" Through Driveways) -4" CA-6 Crushed Aggregate Base Course

## <u>DIMENSION LEGEND</u>

- B-B Back of Curb to Back of Curb
- F-F Face of Curb to Face of Curb
- E-E Edge of Pavement to Edge of Pavement

NOTES:

 All dimensions are to back of curb, face of wall and face of building unless otherwise noted.

2. Refer to Plat of Subdivision & PUD Plat for additional lot information.

## SITE DATA TABLE

| Site Area                          | 4.59        | AC          | 200,024                   | SF                                 |
|------------------------------------|-------------|-------------|---------------------------|------------------------------------|
| Zoning                             |             |             |                           | Classification                     |
| Existing Zoning<br>Proposed Zoning |             |             |                           | M-1<br>R-6 (PUD)                   |
| Existing Comp. P<br>Proposed Comp. | lan<br>Plan | R           | &D, Manufao<br>Mod. Densi | ct., Warehouse<br>ity Multi-Family |
| Density                            |             | Units       |                           | Units/Ac                           |
| Total Units Provid                 | ded         | 48          |                           | 10.45                              |
| 3 Bedroom<br>2 Bedroom             |             | 44<br>4     |                           |                                    |
| 2 Story Townhome                   | •           | 29          |                           |                                    |
| Mews Townhome                      |             | 19          |                           |                                    |
| Lot Area                           |             | 2BR (SF)    | 3BR (SF)                  | Total (SF)                         |
| R-6 (Min. per Type)                | )           | 2,500       | 3,500                     |                                    |
| Required Total                     |             | 10,000      | 154,000                   | 164,000                            |
| Proposed Total                     |             |             |                           | 200,024                            |
| R-6 Setbacks                       | Front (Ft)  | Rear (Ft)   | Side-Int (Ft)             | Side-Ext (Ft)                      |
| Required - Mews                    | 30          | NA          | NA                        | 20                                 |
| Proposed - Mews                    | 30          | NA          | NA                        | 25                                 |
| Required - T.H.                    | 26          | 31          | 41                        | 20                                 |
| Proposed - T.H.                    | 26          | 31          | 31                        | 25                                 |
| Front Yard :                       | Country La  | ane         |                           |                                    |
| Rear Yard :                        | South Pro   | perty Line  |                           |                                    |
| Side Interior :                    | West Prop   | berty Line  |                           |                                    |
| Side Exterior :                    | Old Arling  | ton Heights | s Rd                      |                                    |
| Parking                            |             | Spaces      |                           | Spaces / Unit                      |
| Guest                              |             | 10          |                           | 0.21:1                             |
| Driveway                           |             | 96          |                           | 2:1                                |
| Garage                             |             | 96          |                           | 2:1                                |
| TOTAL                              |             | 202         |                           | 4.21:1                             |
| Coverage                           |             | Area (SF)   | Area (Ac)                 | <b>Ar</b> ea (%)                   |
| Impervious                         |             | 105,805     | 2.43                      | 52.9%                              |
| Buildings (w/ stoo                 | p)          | 53,344      | 1.22                      | 26.7%                              |
| Pavement - Road                    | 1           | 26,166      | 0.60                      | 13.1%                              |
| Pavement - Drive                   | eway        | 15,385      | 0.35                      | 7.7%                               |
| Sidewalk / Patio                   |             | 10,910      | 0.25                      | 5.5%                               |
|                                    |             | 200 024     | 2.10<br><b>1 59</b>       | 41.1%                              |
|                                    |             |             | -1.00                     |                                    |
|                                    |             | Area (SF)   |                           | <b>F.A.K (%)</b>                   |
| างเลเ                              |             | 101.730     |                           | 30.9%                              |

Notes:

Trash storage area's to be located within individual garages
 Bedroom mix shown is an estimate and subject to change



**Level of Service Criteria** 

| Signalized I | ntersections                                                                                                                                                                                   |                                                                                                                        |                       |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------|
|              |                                                                                                                                                                                                |                                                                                                                        | Average Control       |
| Level of     |                                                                                                                                                                                                |                                                                                                                        | Delay                 |
| Service      | Interpreta                                                                                                                                                                                     | tion                                                                                                                   | (seconds per vehicle) |
| A            | Favorable progression. Most veh<br>indication and travel through the<br>stopping.                                                                                                              | icles arrive during the green intersection without                                                                     | ≤10                   |
| В            | Good progression, with more veh<br>Level of Service A.                                                                                                                                         | icles stopping than for                                                                                                | >10 - 20              |
| С            | Individual cycle failures (i.e., one<br>are not able to depart as a result o<br>during the cycle) may begin to ap<br>stopping is significant, although r<br>through the intersection without s | or more queued vehicles<br>f insufficient capacity<br>pear. Number of vehicles<br>nany vehicles still pass<br>topping. | >20 - 35              |
| D            | The volume-to-capacity ratio is h<br>ineffective or the cycle length is t<br>stop and individual cycle failures                                                                                | igh and either progression is<br>oo long. Many vehicles<br>are noticeable.                                             | >35 - 55              |
| E            | Progression is unfavorable. The high and the cycle length is long. are frequent.                                                                                                               | volume-to-capacity ratio is<br>Individual cycle failures                                                               | >55 - 80              |
| F            | The volume-to-capacity ratio is v<br>very poor and the cycle length is<br>clear the queue.                                                                                                     | ery high, progression is long. Most cycles fail to                                                                     | >80.0                 |
| Unsignalize  | d Intersections                                                                                                                                                                                |                                                                                                                        |                       |
|              | Level of Service                                                                                                                                                                               | Average Total Del                                                                                                      | ay (SEC/VEH)          |
|              | А                                                                                                                                                                                              | 0 -                                                                                                                    | 10                    |
|              | В                                                                                                                                                                                              | > 10 -                                                                                                                 | 15                    |
|              | С                                                                                                                                                                                              | > 15 -                                                                                                                 | 25                    |
|              | D                                                                                                                                                                                              | > 25 -                                                                                                                 | 35                    |
|              | E                                                                                                                                                                                              | > 35 -                                                                                                                 | 50                    |
|              | F                                                                                                                                                                                              | > 50                                                                                                                   | )                     |
| Source: Hig  | hway Capacity Manual. 2010.                                                                                                                                                                    |                                                                                                                        |                       |

#### LEVEL OF SERVICE CRITERIA Signalized Intersections

**Capacity Analysis Sheets** 

| Lanes, Volu  | umes, Timings                                                |
|--------------|--------------------------------------------------------------|
| 5: Universit | ty Drive/Old Arlington Heights Road & Arlington Heights Road |

10/3/2016

|                         | 4     | $\mathbf{X}$ | 2    | ~     | ×           | ť    | 3     | *     | ~    | í,    | ×     | *    |
|-------------------------|-------|--------------|------|-------|-------------|------|-------|-------|------|-------|-------|------|
| Lane Group              | SEL   | SET          | SER  | NWL   | NWT         | NWR  | NEL   | NET   | NER  | SWL   | SWT   | SWR  |
| Lane Configurations     | ሻ     | <b>≜1</b> ≽  |      | ሻ     | <b>≜</b> 16 |      |       | 416   |      |       | ፈጉ    |      |
| Volume (vph)            | 4     | 726          | 45   | 97    | 702         | 110  | 49    | 43    | 51   | 144   | 52    | 35   |
| Ideal Flow (vphpl)      | 1900  | 1900         | 1900 | 1900  | 1900        | 1900 | 1900  | 1900  | 1900 | 1900  | 1900  | 1900 |
| Storage Length (ft)     | 150   |              | 0    | 190   |             | 0    | 0     |       | 0    | 0     |       | 0    |
| Storage Lanes           | 1     |              | 0    | 1     |             | 0    | 0     |       | 0    | 0     |       | 0    |
| Taper Length (ft)       | 130   |              |      | 100   |             |      | 25    |       |      | 25    |       |      |
| Lane Util. Factor       | 1.00  | 0.95         | 0.95 | 1.00  | 0.95        | 0.95 | 0.95  | 0.95  | 0.95 | 0.95  | 0.95  | 0.95 |
| Frt                     |       | 0.991        |      |       | 0.980       |      |       | 0.947 |      |       | 0.977 |      |
| Flt Protected           | 0.950 |              |      | 0.950 |             |      |       | 0.983 |      |       | 0.970 |      |
| Satd. Flow (prot)       | 1805  | 3471         | 0    | 1770  | 3406        | 0    | 0     | 3245  | 0    | 0     | 3400  | 0    |
| Flt Permitted           | 0.322 |              |      | 0.268 |             |      |       | 0.772 |      |       | 0.734 |      |
| Satd. Flow (perm)       | 612   | 3471         | 0    | 499   | 3406        | 0    | 0     | 2549  | 0    | 0     | 2573  | 0    |
| Right Turn on Red       |       |              | Yes  |       |             | Yes  |       |       | Yes  |       |       | Yes  |
| Satd. Flow (RTOR)       |       | 12           |      |       | 33          |      |       | 55    |      |       | 27    |      |
| Link Speed (mph)        |       | 30           |      |       | 30          |      |       | 30    |      |       | 30    |      |
| Link Distance (ft)      |       | 877          |      |       | 574         |      |       | 460   |      |       | 317   |      |
| Travel Time (s)         |       | 19.9         |      |       | 13.0        |      |       | 10.5  |      |       | 7.2   |      |
| Peak Hour Factor        | 0.92  | 0.92         | 0.92 | 0.92  | 0.92        | 0.92 | 0.92  | 0.92  | 0.92 | 0.92  | 0.92  | 0.92 |
| Heavy Vehicles (%)      | 0%    | 3%           | 4%   | 2%    | 4%          | 3%   | 0%    | 0%    | 10%  | 1%    | 0%    | 0%   |
| Shared Lane Traffic (%) |       |              |      |       |             |      |       |       |      |       |       |      |
| Lane Group Flow (vph)   | 4     | 838          | 0    | 105   | 883         | 0    | 0     | 155   | 0    | 0     | 252   | 0    |
| Turn Type               | pm+pt | NA           |      | pm+pt | NA          |      | Perm  | NA    |      | Perm  | NA    |      |
| Protected Phases        | 1     | 6            |      | 5     | 2           |      |       | 4     |      |       | 8     |      |
| Permitted Phases        | 6     |              |      | 2     |             |      | 4     |       |      | 8     |       |      |
| Detector Phase          | 1     | 6            |      | 5     | 2           |      | 4     | 4     |      | 8     | 8     |      |
| Switch Phase            |       |              |      |       |             |      |       |       |      |       |       |      |
| Minimum Initial (s)     | 3.0   | 4.0          |      | 3.0   | 4.0         |      | 2.0   | 2.0   |      | 2.0   | 2.0   |      |
| Minimum Split (s)       | 6.5   | 15.0         |      | 6.5   | 15.0        |      | 8.0   | 8.0   |      | 8.0   | 8.0   |      |
| Total Split (s)         | 10.0  | 38.0         |      | 10.0  | 38.0        |      | 22.0  | 22.0  |      | 22.0  | 22.0  |      |
| Total Split (%)         | 14.3% | 54.3%        |      | 14.3% | 54.3%       |      | 31.4% | 31.4% |      | 31.4% | 31.4% |      |
| Yellow Time (s)         | 3.5   | 4.5          |      | 3.5   | 4.5         |      | 4.5   | 4.5   |      | 4.5   | 4.5   |      |
| All-Red Time (s)        | 0.0   | 1.5          |      | 0.0   | 1.5         |      | 1.5   | 1.5   |      | 1.5   | 1.5   |      |
| Lost Time Adjust (s)    | 0.0   | 0.0          |      | 0.0   | 0.0         |      |       | 0.0   |      |       | 0.0   |      |
| Total Lost Time (s)     | 3.5   | 6.0          |      | 3.5   | 6.0         |      |       | 6.0   |      |       | 6.0   |      |
| Lead/Lag                | Lead  | Lag          |      | Lead  | Lag         |      |       |       |      |       |       |      |
| Lead-Lag Optimize?      |       | <sup>o</sup> |      |       | Ū           |      |       |       |      |       |       |      |
| Recall Mode             | None  | Max          |      | None  | Max         |      | None  | None  |      | None  | None  |      |
| Act Effct Green (s)     | 39.2  | 32.4         |      | 42.0  | 38.3        |      |       | 11.2  |      |       | 11.2  |      |
| Actuated g/C Ratio      | 0.62  | 0.51         |      | 0.66  | 0.60        |      |       | 0.18  |      |       | 0.18  |      |
| v/c Ratio               | 0.01  | 0.47         |      | 0.23  | 0.43        |      |       | 0.31  |      |       | 0.53  |      |
| Control Delay           | 4.5   | 12.2         |      | 5.5   | 8.3         |      |       | 17.3  |      |       | 25.7  |      |
| Queue Delay             | 0.0   | 0.0          |      | 0.0   | 0.0         |      |       | 0.0   |      |       | 0.0   |      |
| Total Delay             | 4.5   | 12.2         |      | 5.5   | 8.3         |      |       | 17.3  |      |       | 25.7  |      |
| LOS                     | А     | В            |      | А     | А           |      |       | В     |      |       | С     |      |
| Approach Delay          |       | 12.1         |      |       | 8.0         |      |       | 17.3  |      |       | 25.7  |      |
| Approach LOS            |       | В            |      |       | А           |      |       | В     |      |       | С     |      |
| Queue Length 50th (ft)  | 1     | 107          |      | 11    | 70          |      |       | 18    |      |       | 43    |      |
| Queue Length 95th (ft)  | 3     | 176          |      | 31    | 182         |      |       | 41    |      |       | 75    |      |
| Internal Link Dist (ft) |       | 797          |      |       | 494         |      |       | 380   |      |       | 237   |      |

5/2/2016 AM Existing

Synchro 8 Report Page 1

| Lanes, Volume    | s, Timings    |       |        |       |         |         |       |        |     |     |     |         |
|------------------|---------------|-------|--------|-------|---------|---------|-------|--------|-----|-----|-----|---------|
| 5: University Dr | rive/Old Arli | ngton | Height | s Roa | d & Arl | lington | Heigh | ts Roa | d   |     | 10  | /3/2016 |
|                  | 4             | ×     | 2      | ŗ     | ×       | ť       | 7     | ×      | 7   | í,  | *   | ×       |
| Lane Group       | SEL           | SET   | SER    | NWL   | NWT     | NWR     | NEL   | NET    | NER | SWL | SWT | SWR     |

|                        |       | -    |      |      |      |      |
|------------------------|-------|------|------|------|------|------|
| Turn Bay Length (ft)   | 150   |      | 190  |      |      |      |
| Base Capacity (vph)    | 509   | 1778 | 462  | 2072 | 692  | 677  |
| Starvation Cap Reductn | 0     | 0    | 0    | 0    | 0    | 0    |
| Spillback Cap Reductn  | 0     | 0    | 0    | 0    | 0    | 0    |
| Storage Cap Reductn    | 0     | 0    | 0    | 0    | 0    | 0    |
| Reduced v/c Ratio      | 0.01  | 0.47 | 0.23 | 0.43 | 0.22 | 0.37 |
| Intersection Summary   |       |      |      |      |      |      |
| Area Type              | Other |      |      |      |      |      |

| Area Type:                    | Other       |                        |
|-------------------------------|-------------|------------------------|
| Cycle Length: 70              |             |                        |
| Actuated Cycle Length: 63.4   | 4           |                        |
| Natural Cycle: 40             |             |                        |
| Control Type: Actuated-Unc    | coordinated |                        |
| Maximum v/c Ratio: 0.53       |             |                        |
| Intersection Signal Delay: 1  | 2.2         | Intersection LOS: B    |
| Intersection Capacity Utiliza | ation 54.9% | ICU Level of Service A |
|                               |             |                        |

Analysis Period (min) 15

Splits and Phases: 5: University Drive/Old Arlington Heights Road & Arlington Heights Road

| ø1          | <i>▶</i> <sub>02</sub> | ×ø4   |
|-------------|------------------------|-------|
| 10 s        | 38 s                   | 22 s  |
| <b>₽</b> ₀5 | ¥ø6                    | ×4,08 |
| 10 s        | 38 s                   | 22 s  |

|                            | <b>→</b>    | $\mathbf{r}$ | 1     | -          | 1          | 1          |
|----------------------------|-------------|--------------|-------|------------|------------|------------|
| Movement                   | EBT         | EBR          | WBL   | WBT        | NBL        | NBR        |
| Lane Configurations        | <b>41</b> 2 |              | 5     | <b>*</b> * |            | 1          |
| Volume (veh/h)             | 1574        | 65           | 122   | 947        | 0          | 178        |
| Sign Control               | Free        |              |       | Free       | Stop       |            |
| Grade                      | 0%          |              |       | 0%         | 0%         |            |
| Peak Hour Factor           | 0.89        | 0.89         | 0.89  | 0.89       | 0.89       | 0.89       |
| Hourly flow rate (vph)     | 1769        | 73           | 137   | 1064       | 0          | 200        |
| Pedestrians                |             |              |       |            |            |            |
| Lane Width (ft)            |             |              |       |            |            |            |
| Walking Speed (ft/s)       |             |              |       |            |            |            |
| Percent Blockage           |             |              |       |            |            |            |
| Right turn flare (veh)     |             |              |       |            |            |            |
| Median type                | None        |              |       | None       |            |            |
| Median storage veh)        |             |              |       |            |            |            |
| Upstream signal (ft)       |             |              |       |            |            |            |
| pX, platoon unblocked      |             |              |       |            |            |            |
| vC, conflicting volume     |             |              | 1842  |            | 2611       | 921        |
| vC1, stage 1 conf vol      |             |              |       |            |            |            |
| vC2, stage 2 conf vol      |             |              |       |            |            |            |
| vCu, unblocked vol         |             |              | 1842  |            | 2611       | 921        |
| tC, single (s)             |             |              | 4.1   |            | 6.8        | 6.9        |
| tC, 2 stage (s)            |             |              |       |            |            |            |
| tF (s)                     |             |              | 2.2   |            | 3.5        | 3.3        |
| p0 queue free %            |             |              | 59    |            | 100        | 27         |
| cM capacity (veh/h)        |             |              | 331   |            | 12         | 275        |
| Direction, Lane #          | EB 1        | EB 2         | WB 1  | WB 2       | WB 3       | NB 1       |
| Volume Total               | 1179        | 663          | 137   | 532        | 532        | 200        |
| Volume Left                | 0           | 0            | 137   | 0          | 0          | 0          |
| Volume Right               | 0           | 73           | 0     | 0          | 0          | 200        |
| cSH                        | 1700        | 1700         | 331   | 1700       | 1700       | 275        |
| Volume to Capacity         | 0.69        | 0.39         | 0.41  | 0.31       | 0.31       | 0.73       |
| Oueue Length 95th (ft)     | 0           | 0            | 49    | 0          | 0          | 129        |
| Control Delay (s)          | 0.0         | 0.0          | 23.4  | 0.0        | 0.0        | 46.6       |
| Lane LOS                   |             |              | С     |            |            | E          |
| Approach Delay (s)         | 0.0         |              | 2.7   |            |            | 46.6       |
| Approach LOS               |             |              |       |            |            | E          |
| Intersection Summary       |             |              |       |            |            |            |
| Average Delay              |             |              | 3.9   |            |            |            |
| Intersection Capacity Util | ization     |              | 63.3% | IC         | CU Level o | of Service |
| Analysis Period (min)      |             |              | 15    |            |            |            |
|                            |             |              | 10    |            |            |            |

| HCM Unsignalized Intersection Capacity  | / Analysis         |
|-----------------------------------------|--------------------|
| 8: Old Arlington Heights Road & Country | / Lane/Martin Lane |

10/3/2016

|                                | ≯          | -    | $\rightarrow$ | 1         | -          | *          | ٩.       | 1    | 1    | 1          | Ŧ    | ~    |
|--------------------------------|------------|------|---------------|-----------|------------|------------|----------|------|------|------------|------|------|
| Movement                       | EBL        | EBT  | EBR           | WBL       | WBT        | WBR        | NBL      | NBT  | NBR  | SBL        | SBT  | SBR  |
| Lane Configurations            |            | 4    |               |           | \$         |            |          | \$   |      |            | \$   |      |
| Volume (veh/h)                 | 1          | 0    | 3             | 15        | 0          | 35         | 6        | 169  | 7    | 9          | 197  | 7    |
| Sign Control                   |            | Stop |               |           | Stop       |            |          | Free |      |            | Free |      |
| Grade                          |            | 0%   |               |           | 0%         |            |          | 0%   |      |            | 0%   |      |
| Peak Hour Factor               | 0.89       | 0.89 | 0.89          | 0.89      | 0.89       | 0.89       | 0.89     | 0.89 | 0.89 | 0.89       | 0.89 | 0.89 |
| Hourly flow rate (vph)         | 1          | 0    | 3             | 17        | 0          | 39         | 7        | 190  | 8    | 10         | 221  | 8    |
| Pedestrians                    |            |      |               |           |            |            |          |      |      |            |      |      |
| Lane Width (ft)                |            |      |               |           |            |            |          |      |      |            |      |      |
| Walking Speed (ft/s)           |            |      |               |           |            |            |          |      |      |            |      |      |
| Percent Blockage               |            |      |               |           |            |            |          |      |      |            |      |      |
| Right turn flare (veh)         |            |      |               |           |            |            |          |      |      |            |      |      |
| Median type                    |            |      |               |           |            |            |          | None |      |            | None |      |
| Median storage veh)            |            |      |               |           |            |            |          |      |      |            |      |      |
| Upstream signal (ft)           |            |      |               |           |            |            |          | 1034 |      |            |      |      |
| pX, platoon unblocked          |            |      |               | . = .     |            |            |          |      |      |            |      |      |
| vC, conflicting volume         | 492        | 457  | 225           | 456       | 457        | 194        | 229      |      |      | 198        |      |      |
| vC1, stage 1 conf vol          |            |      |               |           |            |            |          |      |      |            |      |      |
| vC2, stage 2 cont vol          | 400        | 457  | 005           | 457       | 457        | 104        | 220      |      |      | 100        |      |      |
|                                | 492        | 457  | 225           | 456       | 457        | 194        | 229      |      |      | 198        |      |      |
| IC, Single (S)                 | 7.1        | 6.5  | 0.5           | 7.1       | 0.5        | 0.3        | 4.1      |      |      | 4.2        |      |      |
| tC, Z Stage (S)                | 2 5        | 10   | 2.4           | 2 5       | 1.0        | 2.4        | <u> </u> |      |      | 1 1        |      |      |
| IF (S)                         | 3.5<br>100 | 4.0  | 3.0<br>100    | 3.5       | 4.0        | 3.4<br>0E  | 2.Z      |      |      | 2.3        |      |      |
| pu queue free %                | 100        | 100  | 742           | 97<br>511 | 100        | 90<br>020  | 100      |      |      | 99<br>1222 |      |      |
| civi capacity (venini)         | 403        | 497  | 745           | 511       | 497        | 030        | 1301     |      |      | 1323       |      |      |
| Direction, Lane #              | EB 1       | WB 1 | NB 1          | SB 1      |            |            |          |      |      |            |      |      |
| Volume Total                   | 4          | 56   | 204           | 239       |            |            |          |      |      |            |      |      |
| Volume Left                    | 1          | 17   | 7             | 10        |            |            |          |      |      |            |      |      |
| Volume Right                   | 3          | 39   | 8             | 8         |            |            |          |      |      |            |      |      |
| cSH                            | 645        | 703  | 1351          | 1323      |            |            |          |      |      |            |      |      |
| Volume to Capacity             | 0.01       | 0.08 | 0.00          | 0.01      |            |            |          |      |      |            |      |      |
| Queue Length 95th (ft)         | 1          | 6    | 0             | 1         |            |            |          |      |      |            |      |      |
| Control Delay (s)              | 10.6       | 10.6 | 0.3           | 0.4       |            |            |          |      |      |            |      |      |
| Lane LOS                       | 10 (       | B    | A             | A         |            |            |          |      |      |            |      |      |
| Approach Delay (s)             | 10.6       | 10.6 | 0.3           | 0.4       |            |            |          |      |      |            |      |      |
| Approach LUS                   | В          | В    |               |           |            |            |          |      |      |            |      |      |
| Intersection Summary           |            |      |               |           |            |            |          |      |      |            |      |      |
| Average Delay                  |            |      | 1.6           |           |            |            |          |      |      |            |      |      |
| Intersection Capacity Utilizat | tion       |      | 25.5%         | IC        | CU Level o | of Service |          |      | А    |            |      |      |
| Analysis Period (min)          |            |      | 15            |           |            |            |          |      |      |            |      |      |

| Lanes, Volumes, Timings                   |                               |
|-------------------------------------------|-------------------------------|
| 5: University Drive/Old Arlington Heights | Road & Arlington Heights Road |

10/3/2016

| Lane Configurations         SEL         SER         NWL         NWT         NWR         NEL         NET         NER         SWL         SWT         SWR           Lane Configurations         1         1         71         42         75         224         200         53         60         123         241         53         19           Ideal Flow (phpl)         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900                                                                                                                                                                                                                                                                                                                                                     |                         | 4            | $\mathbf{x}$ | 2    | ~             | ×         | ť    | 3     | *         | ~    | í,     | ¥         | *    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|--------------|------|---------------|-----------|------|-------|-----------|------|--------|-----------|------|
| Lane Configurations $\uparrow$ $\downarrow$ <                                                                                                                                                                                                                                                                                                    | Lane Group              | SEL          | SET          | SER  | NWL           | NWT       | NWR  | NEL   | NET       | NER  | SWL    | SWT       | SWR  |
| Volume (vph)         21         791         42         75         924         200         53         70         123         241         153         19           Ideal Flow (vph)         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900                                                                                                                                                                                                                                                                                                                                                | Lane Configurations     | ሻ            | <b>4</b> 16  |      | ሻ             | 41÷       |      |       | đĥ        |      |        | ፈጉ        |      |
| Ideal Flow (rphp)         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900         1900 <td>Volume (vph)</td> <td>21</td> <td>791</td> <td>42</td> <td>75</td> <td>924</td> <td>200</td> <td>53</td> <td>60</td> <td>123</td> <td>241</td> <td>53</td> <td>19</td>                                                                                                                                               | Volume (vph)            | 21           | 791          | 42   | 75            | 924       | 200  | 53    | 60        | 123  | 241    | 53        | 19   |
| Skarage Lengh (ft)         150         0         190         0         0         0         0         0         0         0           Storage Lengh (ft)         130         0         0         25         25         25           Lane Ult Factor         1.00         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.93         0.93         0                                                                                                                                                                                                                                                                                                                                                   | Ideal Flow (vphpl)      | 1900         | 1900         | 1900 | 1900          | 1900      | 1900 | 1900  | 1900      | 1900 | 1900   | 1900      | 1900 |
| Storage Lanes         1         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         3         0         0         3         0         0         3         0         0         3         0         0         3         0         0         3         0         0         3         0         0         3         0         0         3         0         0         3         0         0         3         0         0         3         0         0         0         3         0         0         0         3         0         3         0         3         0         3         0         3         0         3         0         3         0         <                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Storage Length (ft)     | 150          |              | 0    | 190           |           | 0    | 0     |           | 0    | 0      |           | 0    |
| Tape Length (t)         130         100         25         25           Lane Uli. Factor         1.00         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95 <td>Storage Lanes</td> <td>1</td> <td></td> <td>0</td> <td>1</td> <td></td> <td>0</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td></td> <td>0</td>                                                                                                                                                                          | Storage Lanes           | 1            |              | 0    | 1             |           | 0    | 0     |           | 0    | 0      |           | 0    |
| Lane Util. Factor         1.00         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.95         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93 <th0.93< th="">         0.93         0.93</th0.93<>                                                                                                                                                                                                                                                                                                             | Taper Length (ft)       | 130          |              |      | 100           |           |      | 25    |           |      | 25     |           |      |
| Frit         0.992         0.973         0.922         0.991           FIP rotected         0.950         0.980         0.982         0.991           FIP rotected         0.970         0.950         0.982         0.991           FIP rotected         0.174         0.246         0.771         0.661           Satd, Flow (prom)         331         3539         0         463         3478         0         2540         0         0.2340         0           Right Turn on Red         Yes                                                                                                                                                                                                                                                                                                                                                                                   | Lane Util. Factor       | 1.00         | 0.95         | 0.95 | 1.00          | 0.95      | 0.95 | 0.95  | 0.95      | 0.95 | 0.95   | 0.95      | 0.95 |
| Fit Protected       0.950       0.950       0.989       0.983       0.983         Said Flow (prot)       1805       3539       0       1787       3478       0       0       3258       0       0       3409       0         Said Flow (prot)       331       3539       0       463       3478       0       0       2540       0       0       2340       0         Righ Turn on Red       Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Frt                     |              | 0.992        |      |               | 0.973     |      |       | 0.922     |      |        | 0.991     |      |
| Said, Flow (prot)         1805         3539         0         1787         3478         0         0         3258         0         0         3409         0           FI Permitted         0.174         0.246         0.771         0.661         0.661           Said, Flow (perm)         331         0539         0         463         3478         0         0         2240         0           Right Turn on Red         Yes         Yes         Yes         Yes         Yes         Yes         Yes           Said, Flow (prot)         30         30         30         30         30         30         30           Link Speed (mph)         30         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93                                                                                                                                                                                                                                                                                                                                                                        | Flt Protected           | 0.950        |              |      | 0.950         |           |      |       | 0.989     |      |        | 0.963     |      |
| FI Permitted       0.174       0.0246       0.071       0.071       0.661         Satd. Flow (perm)       33       3539       0       463       3478       0       0       2340       0         Satd. Flow (perm)       33       3539       0       463       3478       0       0       2340       0         Satd. Flow (RTOR)       7       36       132       8       Yes       Yes       Yes         Satd. Flow (RTOR)       30       30       30       30       30       30       30         Link Speed (mph)       30       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93       0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Satd, Flow (prot)       | 1805         | 3539         | 0    | 1787          | 3478      | 0    | 0     | 3258      | 0    | 0      | 3409      | 0    |
| Said. Flow (perm)         331         3539         0         463         3478         0         0         2540         0         0         2340         0           Right Turn on Red         Yes         Xes                                                                                                                                                                                                                                                                                                                                                                         | Flt Permitted           | 0.174        |              | -    | 0.246         |           | -    | -     | 0.771     | -    | -      | 0.661     | -    |
| Right Turri on Red         Yes                                                                                                                                                                                                                                                                                                                                                                    | Satd. Flow (perm)       | 331          | 3539         | 0    | 463           | 3478      | 0    | 0     | 2540      | 0    | 0      | 2340      | 0    |
| Sald. Flow (RTOR)         7         36         132         8           Link Speed (mph)         30         30         30         30         30           Link Distance (t)         877         574         460         317           Travel Time (s)         19.9         13.0         10.5         7.2           Peak Hour Factor         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93                                                                                                                                                                                                                                                                                                                                                           | Right Turn on Red       | 001          | 0007         | Yes  |               | 0170      | Yes  | U U   | 2010      | Yes  | Ū      | 2010      | Yes  |
| Determine (not)         30         30         30         30         30         30           Link Speed (mph)         30         30         30         30         30         30           Link Speed (mph)         877         574         460         317         Travel Time (s)         7.2         Peak Hour Factor         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93 <t< td=""><td>Satd Flow (RTOR)</td><td></td><td>7</td><td>100</td><td></td><td>36</td><td></td><td></td><td>132</td><td></td><td></td><td>8</td><td>100</td></t<>                                                                                                                                                                           | Satd Flow (RTOR)        |              | 7            | 100  |               | 36        |      |       | 132       |      |        | 8         | 100  |
| Link Distance (h)         B77         574         460         317           Travel Time (s)         19.9         13.0         10.5         7.2           Peak Hour Factor         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93                                                                                                                                                                                                                                                                                                                                           | Link Speed (mph)        |              | 30           |      |               | 30        |      |       | 30        |      |        | 30        |      |
| Invest Time (s)         19.9         13.0         10.5         7.2           Peak Hour Factor         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.93         0.                                                                                                                                                                                                                                                                                                                              | Link Distance (ff)      |              | 877          |      |               | 574       |      |       | 460       |      |        | 317       |      |
| Production         Org         Org <thorg< th=""> <thor< td=""><td>Travel Time (s)</td><td></td><td>19.9</td><td></td><td></td><td>13.0</td><td></td><td></td><td>10.5</td><td></td><td></td><td>72</td><td></td></thor<></thorg<>                                                                                                                                                                                        | Travel Time (s)         |              | 19.9         |      |               | 13.0      |      |       | 10.5      |      |        | 72        |      |
| Heary Vehicles (%)         0%         1%         1%         1%         1%         0%         0%         1%         0%         0%         1%         0%         1%         0%         0%         1%         0%         0%         0%         1%         1%         0%         0%         1%         1%         0%         0%         1%         1%         0%         0%         1%         1%         0%         0%         1%         1%         0%         0%         1%         1%         0%         0%         1%         1%         0%         0%         1%         1%         0%         0%         1%         1%         0%         1%         1%         0%         0%         1%         1%         0%         1%         1%         0%         1%         1%         0%         1%         1%         0%         1%         1%         0%         1%         1%         0%         1%         1%         0%         1%         1%         0%         1%         1%         0%         1%         1%         1%         1%         1%         1%         1%         1%         1%         1%         1%         1%         1%         1%         1%                                                                                                                                                                                                                                                                                                                                                                                                            | Peak Hour Factor        | 0.93         | 0.93         | 0.93 | 0.93          | 0.93      | 0.93 | 0.93  | 0.93      | 0.93 | 0.93   | 0.93      | 0.93 |
| India y fondato y       India y       Indi                                                                                                                                                                                                                                                                                          | Heavy Vehicles (%)      | 0%           | 1%           | 5%   | 1%            | 1%        | 1%   | 0%    | 0%        | 2%   | 1%     | 0%        | 5%   |
| Discretion Callo Flow (vph)         23         896         0         81         1209         0         0         254         0         0         336         0           Turn Type         pm+pt         NA         pmm+pt         NA         perm         NA         Perm         NA           Protected Phases         1         6         5         2         4         8         Permitted Phases         6         2         4         8         Permitted Phases         1         6         5         2         4         4         8         8         Detector Phase         1         6         5         2         4         4         8         8         Detector Phase         1         6         5         2         4         4         8         8         Detector Phase         1         6         5         2         4         4         8         8         Detector Phase         1         0         0         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10 <t< td=""><td>Shared Lane Traffic (%)</td><td>070</td><td>170</td><td>070</td><td>170</td><td>170</td><td>170</td><td>070</td><td>070</td><td>270</td><td>170</td><td>070</td><td>070</td></t<>                                                                                                                                                                                                   | Shared Lane Traffic (%) | 070          | 170          | 070  | 170           | 170       | 170  | 070   | 070       | 270  | 170    | 070       | 070  |
| Lank outpint         Los         Co         Los         Co         Co <thco< th="">         Co         Co</thco<>                                                                                                                                                                                                                                                                                                                                                                                                     | Lane Group Flow (vph)   | 23           | 896          | 0    | 81            | 1209      | 0    | 0     | 254       | 0    | 0      | 336       | 0    |
| Introduct         Introduct <t< td=""><td>Turn Type</td><td>nm+nt</td><td>NΔ</td><td>U</td><td>nm+nt</td><td>NΔ</td><td>0</td><td>Perm</td><td>NΔ</td><td>U</td><td>Perm</td><td>NΔ</td><td>U</td></t<> | Turn Type               | nm+nt        | NΔ           | U    | nm+nt         | NΔ        | 0    | Perm  | NΔ        | U    | Perm   | NΔ        | U    |
| Provided Phases       6       2       4       8         Detector Phase       1       6       5       2       4       4       8       8         Switch Phase         1.0       3.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0 <td< td=""><td>Protected Phases</td><td>1<br/>1</td><td>6</td><td></td><td>5</td><td>2</td><td></td><td>T CHI</td><td>4</td><td></td><td>1 Citi</td><td>8</td><td></td></td<>                                                                                                                                                                                                                                                                                                                         | Protected Phases        | 1<br>1       | 6            |      | 5             | 2         |      | T CHI | 4         |      | 1 Citi | 8         |      |
| Initiated Filescol         I         6         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th="">         1         <th1< th=""></th1<></th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                  | Permitted Phases        | 6            | U            |      | 2             | 2         |      | 4     |           |      | 8      | 0         |      |
| Detection findse       1       0       3       1       4       4       0       0         Minimum Initial (s)       3.0       1.0       3.0       1.0       1.0       1.0       1.0       1.0         Minimum Split (s)       6.5       15.0       6.5       15.0       8.0       8.0       8.0       8.0         Total Split (s)       10.0       45.0       10.0       45.0       35.0       35.0       35.0       35.0         Total Split (%)       11.1%       50.0%       11.1%       50.0%       38.9%       38.9%       38.9%       38.9%         Yellow Time (s)       3.5       4.5       3.5       4.5       4.5       4.5         All-Red Time (s)       0.0       1.5       1.5       1.5       1.5       1.5         Lost Time Adjust (s)       0.0       0.0       0.0       0.0       0.0       0.0         Lead-Lag       Lead       Lag       Lag       Lead       Lag       Lag       Lag       Lead       Lag       Lag       Lag       Lag       L                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Detector Phase          | 1            | 6            |      | <u>ح</u><br>5 | 2         |      | 4     | 1         |      | 8      | 8         |      |
| Minimum Initial (s)         3.0         1.0         3.0         1.0         1.0         1.0         1.0           Minimum Initial (s)         6.5         15.0         6.5         15.0         8.0         8.0         8.0         8.0           Total Split (s)         10.0         45.0         10.0         45.0         35.0         35.0         35.0         35.0           Total Split (%)         11.1%         50.0%         11.1%         50.0%         38.9%         38.9%         38.9%         38.9%         38.9%           Yellow Time (s)         3.5         4.5         3.5         4.5         4.5         4.5         4.5         4.5           All-Red Time (s)         0.0         1.5         0.0         1.5         1.5         1.5         1.5         1.5           Lost Time Adjust (s)         0.0         0.0         0.0         0.0         0.0         0.0         0.0           Lead-Lag         Lead         Lag         Lead         Lag         Lead         Lag         Lead         Lag         Lead         Lag         Los Time Adjust (s)         O.0         O.0         O.0         O.0         O.0         D.0         D.0         D.0         D.0                                                                                                                                                                                                                                                                                                                                                                         | Switch Phase            | 1            | U            |      | 5             | 2         |      | Т     |           |      | U      | 0         |      |
| Minimum Mudi (y)         1.5         1.5         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6 <th1.6< th=""></th1.6<>                                                                                                                                                                                                                                                                                                                                                          | Minimum Initial (s)     | 3.0          | 10           |      | 3.0           | 10        |      | 10    | 10        |      | 10     | 10        |      |
| Minimit Opin (s)         0.5         15.5         15.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5         16.5                                                                                                                                                                                                                                                                                                                            | Minimum Snlit (s)       | 6.5          | 15.0         |      | 6.5           | 15.0      |      | 8.0   | 8.0       |      | 8.0    | 8.0       |      |
| Total Split (%)       11.1%       50.0%       10.0%       10.0%       10.0%       38.9%       38.9%       38.9%       38.9%         Yellow Time (s)       3.5       4.5       3.5       4.5       4.5       4.5       4.5         All-Red Time (s)       0.0       1.5       0.0       1.5       1.5       1.5       1.5       1.5         Lost Time Adjust (s)       0.0       0.0       0.0       0.0       0.0       0.0         Total Lost Time (s)       3.5       6.0       3.5       6.0       6.0       6.0         Lead/Lag       Lead       Lag       Lead       Lag       Lead       Lag       Lead       Lag         Lead-Lag Optimize?       Recall Mode       None       Max       None       None       None       None       None         Act Effct Green (s)       46.6       39.5       48.5       43.6       16.9       16.9       Actuated g/C Ratio       0.61       0.52       0.64       0.57       0.22       0.22       0.22       v/c Ratio       0.00       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total Split (s)         | 10.0         | 45.0         |      | 10.0          | 45.0      |      | 35.0  | 35.0      |      | 35.0   | 35.0      |      |
| Note opin (vo)       N110 50.00       N110 50.00       S0.70 50.70       S0.70 50.70         Yellow Time (s)       3.5       4.5       3.5       4.5       4.5       4.5       4.5         All-Red Time (s)       0.0       1.5       0.0       1.5       1.5       1.5       1.5       1.5         Lost Time Adjust (s)       0.0       0.0       0.0       0.0       0.0       0.0         Total Lost Time (s)       3.5       6.0       3.5       6.0       6.0       6.0         Lead/Lag       Lead       Lag       Lead       Lag       Lead       Lag         Lead-Lag Optimize?       Recall Mode       None       Max       None       None       None       None       None         Act Effct Green (s)       46.6       39.5       48.5       43.6       16.9       16.9         Actuated g/C Ratio       0.61       0.52       0.64       0.57       0.22       0.22         V/c Ratio       0.07       0.49       0.20       0.60       0.38       1.02dl         Control Delay       6.6       14.4       7.2       14.0       13.9       32.3         LOS       A       B       A       B                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total Split (%)         | 11 1%        | 50.0%        |      | 11 1%         | 50.0%     |      | 38.9% | 38.9%     |      | 38.9%  | 38.9%     |      |
| Control (a)       0.0       1.5       0.0       1.5       1.5       1.5       1.5       1.5         All-Red Time (s)       0.0       0.0       0.0       0.0       0.0       0.0         Lost Time Adjust (s)       0.0       0.0       0.0       0.0       0.0       0.0         Total Lost Time (s)       3.5       6.0       3.5       6.0       6.0       6.0         Lead/Lag       Lead       Lag       Lead       Lag       Lead       Lag         Lead/Lag       Lead       Lag       Lead       Lag       Lead       Lag         Recall Mode       None       Max       None       Max       None       None       None         Act Effct Green (s)       46.6       39.5       48.5       43.6       16.9       16.9         Actuated g/C Ratio       0.61       0.52       0.64       0.57       0.22       0.22         V/c Ratio       0.07       0.49       0.20       0.60       0.38       1.02dl         Control Delay       6.6       14.4       7.2       14.0       13.9       32.3         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Yellow Time (s)         | 35           | 4 5          |      | 35            | 4 5       |      | 4 5   | 4 5       |      | 4 5    | 4 5       |      |
| An root mine (g)       0.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0 <td>All-Red Time (s)</td> <td>0.0</td> <td>1.5</td> <td></td> <td>0.0</td> <td>1.5</td> <td></td> <td>1.5</td> <td>1.5</td> <td></td> <td>1.5</td> <td>1.5</td> <td></td>                                                                                                                                                                                                                                                                                      | All-Red Time (s)        | 0.0          | 1.5          |      | 0.0           | 1.5       |      | 1.5   | 1.5       |      | 1.5    | 1.5       |      |
| Lost Time (s)         3.5         6.0         3.5         6.0         6.0         6.0           Total Lost Time (s)         3.5         6.0         3.5         6.0         6.0         6.0         6.0           Lead/Lag         Lead         Lag         Lead         Lag         Lead         Lag           Lead-Lag Optimize?         Recall Mode         None         Max         None         Max         None         None         None           Act Effet Green (s)         46.6         39.5         48.5         43.6         16.9         16.9           Actuated g/C Ratio         0.61         0.52         0.64         0.57         0.22         0.22           v/c Ratio         0.07         0.49         0.20         0.60         0.38         1.02dl           Control Delay         6.6         14.4         7.2         14.0         13.9         32.3           Queue Delay         0.0         0.0         0.0         0.0         0.0         0.0         13.9         32.3           LOS         A         B         A         B         C         13.9         32.3           LOS         A         B         A         B         C <td>Lost Time Adjust (s)</td> <td>0.0</td> <td>0.0</td> <td></td> <td>0.0</td> <td>0.0</td> <td></td> <td>1.5</td> <td>0.0</td> <td></td> <td>1.5</td> <td>0.0</td> <td></td>                                                                                                                                                                                                                            | Lost Time Adjust (s)    | 0.0          | 0.0          |      | 0.0           | 0.0       |      | 1.5   | 0.0       |      | 1.5    | 0.0       |      |
| Lead/Lag       Lead       Lag       Lead       Lag         Lead-Lag Optimize?       Recall Mode       None       Max       None       Max       None                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Lost Time (s)     | 3.5          | 6.0          |      | 3.5           | 6.0       |      |       | 6.0       |      |        | 6.0       |      |
| Lead       Lead <thlead< th="">       Lead       Lead</thlead<>                                                                                                                                                                                                                                                                                                                                                                                                           | Lead/Lag                | Lead         | Lan          |      | Lead          | Lan       |      |       | 0.0       |      |        | 0.0       |      |
| Recall Mode         None         Max         None         Max         None                                                                                                                                                                                                                                                                                                                                  | Lead-Lag Ontimize?      | Louu         | Lug          |      | Louu          | Lug       |      |       |           |      |        |           |      |
| Act Effct Green (s)       46.6       39.5       48.5       43.6       16.9       16.9         Actuated g/C Ratio       0.61       0.52       0.64       0.57       0.22       0.22         v/c Ratio       0.07       0.49       0.20       0.60       0.38       1.02dl         Control Delay       6.6       14.4       7.2       14.0       13.9       32.3         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0         Total Delay       6.6       14.4       7.2       14.0       13.9       32.3         LOS       A       B       A       B       C       A         Approach Delay       14.2       13.6       13.9       32.3         LOS       B       B       B       C       C         Approach LOS       B       B       B       C       C         Queue Length 50th (ft)       3       143       12       150       25       76         Queue Length 95th (ft)       14       235       35       351       55       118       124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Recall Mode             | None         | Мах          |      | None          | Max       |      | None  | None      |      | None   | None      |      |
| Act Life Creatio       0.61       0.52       0.64       0.57       0.22       0.22         v/c Ratio       0.07       0.49       0.20       0.60       0.38       1.02dl         Control Delay       6.6       14.4       7.2       14.0       13.9       32.3         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0         Total Delay       6.6       14.4       7.2       14.0       13.9       32.3         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0         Total Delay       6.6       14.4       7.2       14.0       13.9       32.3         LOS       A       B       A       B       C       A         Approach Delay       14.2       13.6       13.9       32.3         Approach LOS       B       B       B       C       C         Queue Length 50th (ft)       3       143       12       150       25       76         Queue Length 95th (ft)       14       235       35       351       55       118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Act Effet Green (s)     | 16.6         | 20 5         |      | 18 5          | 13.6      |      | None  | 16.0      |      | None   | 16.0      |      |
| Actuated gree Nation       0.01       0.02       0.04       0.07       0.42       0.22         v/c Ratio       0.07       0.49       0.20       0.60       0.38       1.02dl         Control Delay       6.6       14.4       7.2       14.0       13.9       32.3         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0         Total Delay       6.6       14.4       7.2       14.0       13.9       32.3         LOS       A       B       A       B       C       A         Approach Delay       14.2       13.6       13.9       32.3         Approach LOS       B       B       B       C         Queue Length 50th (ft)       3       143       12       150       25       76         Queue Length 95th (ft)       14       235       35       351       55       118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Actuated a/C Ratio      | 40.0<br>0.61 | 0.52         |      | 0.64          | 45.0      |      |       | 0.2       |      |        | 0.2       |      |
| Control Delay       6.6       14.4       7.2       14.0       13.9       32.3         Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0         Total Delay       6.6       14.4       7.2       14.0       13.9       32.3         LOS       A       B       A       B       B       C         Approach Delay       14.2       13.6       13.9       32.3         LOS       A       B       A       B       C         Approach Delay       14.2       13.6       13.9       32.3         Queue Length 50th (ft)       3       143       12       150       25       76         Queue Length 95th (ft)       14       235       35       351       55       118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | v/c Patio               | 0.01         | 0.32         |      | 0.04          | 0.57      |      |       | 0.22      |      |        | 1 02dl    |      |
| Queue Delay       0.0       0.0       0.0       0.0       0.0       0.0         Total Delay       6.6       14.4       7.2       14.0       13.9       32.3         LOS       A       B       A       B       B       C         Approach Delay       14.2       13.6       13.9       32.3         LOS       A       B       A       B       C         Approach Delay       14.2       13.6       13.9       32.3         Approach LOS       B       B       B       C         Queue Length 50th (ft)       3       143       12       150       25       76         Queue Length 95th (ft)       14       235       35       351       55       118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Control Delay           | 6.6          | 1/1 /        |      | 7.2           | 1/ 0      |      |       | 13.0      |      |        | 22.2      |      |
| Code Delay       6.6       0.6       0.6       0.6       0.6       0.6       0.6       0.6         Total Delay       6.6       14.4       7.2       14.0       13.9       32.3         LOS       A       B       A       B       B       C         Approach Delay       14.2       13.6       13.9       32.3         Approach LOS       B       B       B       C         Queue Length 50th (ft)       3       143       12       150       25       76         Queue Length 95th (ft)       14       235       35       351       55       118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 0.0          | 0.0          |      | 0.0           | 0.0       |      |       | 13.7      |      |        | 0.0       |      |
| LOS     A     B     A     B     B     C       Approach Delay     14.2     13.6     13.9     32.3       Approach LOS     B     B     B     C       Queue Length 50th (ft)     3     143     12     150     25     76       Queue Length 95th (ft)     14     235     35     351     55     118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Dolay             | 6.6          | 1/ /         |      | 0.0           | 14.0      |      |       | 12.0      |      |        | 22.2      |      |
| Los     A     B     A     B     B     C       Approach Delay     14.2     13.6     13.9     32.3       Approach LOS     B     B     B     C       Queue Length 50th (ft)     3     143     12     150     25     76       Queue Length 95th (ft)     14     235     35     351     55     118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | 0.0          | 14.4<br>R    |      | Λ.2           | 14.0<br>R |      |       | 1J.7<br>R |      |        | JZ.J      |      |
| Approach Dolay     14.2     15.0     15.7     52.3       Approach LOS     B     B     C       Queue Length 50th (ft)     3     143     12     150     25     76       Queue Length 95th (ft)     14     235     35     351     55     118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Annroach Dolay          | A            | 1/ 2         |      | A             | 12.6      |      |       | 12.0      |      |        | 32.5      |      |
| Oueue Length 50th (ft)         3         143         12         150         25         76           Oueue Length 95th (ft)         14         235         35         351         55         118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Approach LOS            |              | 14.Z<br>R    |      |               | 13.0<br>D |      |       | 1J.7<br>R |      |        | JZ.J      |      |
| Queue Length 95th (ft)         14         235         35         351         55         118           Interned Link Dict (ft)         707         404         200         227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Approach 203            | 2            | 1/2          |      | 10            | 150       |      |       | ט<br>25   |      |        | 76        |      |
| Quede Lengui 7011 (II)         14         200         10           Internel Link Dict (ft)         707         404         200         007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Queue Length SUIT (II)  | ۲<br>11      | 140<br>005   |      | 12            | 251       |      |       | 20        |      |        | /0<br>110 |      |
| Internal Link Dist (11) /9/ 494 380 237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Internal Link Dist (ft) | 14           | 235<br>797   |      | 55            | 494       |      |       | 380       |      |        | 237       |      |

5/2/2016 PM Existing

Synchro 8 Report Page 1

| Lanes, Volumes,                                                         | Timings |      |     |      |      |     |     |      |     |     |      |           |  |
|-------------------------------------------------------------------------|---------|------|-----|------|------|-----|-----|------|-----|-----|------|-----------|--|
| 5: University Drive/Old Arlington Heights Road & Arlington Heights Road |         |      |     |      |      |     |     |      |     |     | 10/  | 10/3/2016 |  |
|                                                                         | ¥.      | ×    | 2   | Ť    | ×    | ť   | 7   | ×    | 7   | í,  | *    | ×         |  |
| Lane Group                                                              | SEL     | SET  | SER | NWL  | NWT  | NWR | NEL | NET  | NER | SWL | SWT  | SWR       |  |
| Turn Bay Length (ft)                                                    | 150     |      |     | 190  |      |     |     |      |     |     |      |           |  |
| Base Capacity (vph)                                                     | 331     | 1839 |     | 409  | 2004 |     |     | 1060 |     |     | 907  |           |  |
| Starvation Cap Reductn                                                  | 0       | 0    |     | 0    | 0    |     |     | 0    |     |     | 0    |           |  |
| Spillback Cap Reductn                                                   | 0       | 0    |     | 0    | 0    |     |     | 0    |     |     | 0    |           |  |
| Storage Cap Reductn                                                     | 0       | 0    |     | 0    | 0    |     |     | 0    |     |     | 0    |           |  |
| Reduced v/c Ratio                                                       | 0.07    | 0.49 |     | 0.20 | 0.60 |     |     | 0.24 |     |     | 0.37 |           |  |
| Intersection Summary                                                    |         |      |     |      |      |     |     |      |     |     |      |           |  |
| Area Type:                                                              | Other   |      |     |      |      |     |     |      |     |     |      |           |  |
| Cycle Length: 90                                                        |         |      |     |      |      |     |     |      |     |     |      |           |  |

Splits and Phases: 5: University Drive/Old Arlington Heights Road & Arlington Heights Road

| ø1   | <b>Å</b> <sub>02</sub> | <b>≯</b> ø4 |
|------|------------------------|-------------|
| 10 s | 45 s                   | 35 s        |
| ₩ø5  | ¥ ø6                   | × 408       |
| 10 s | 45 s                   | 35 s        |

Intersection LOS: B

ICU Level of Service D

Actuated Cycle Length: 76.2

Maximum v/c Ratio: 0.64 Intersection Signal Delay: 16.1

Analysis Period (min) 15

Control Type: Actuated-Uncoordinated

Intersection Capacity Utilization 74.1%

dl Defacto Left Lane. Recode with 1 though lane as a left lane.

Natural Cycle: 50

| HCM Unsignalized Intersection Capacity  | / Analysis         |
|-----------------------------------------|--------------------|
| 8: Old Arlington Heights Road & Country | / Lane/Martin Lane |

10/3/2016

|                               | ≯         | -    | $\rightarrow$ | 1         | +          | *          | ٩.         | 1    | 1    | 1          | Ŧ    | ~    |
|-------------------------------|-----------|------|---------------|-----------|------------|------------|------------|------|------|------------|------|------|
| Movement                      | EBL       | EBT  | EBR           | WBL       | WBT        | WBR        | NBL        | NBT  | NBR  | SBL        | SBT  | SBR  |
| Lane Configurations           |           | 4    |               |           | \$         |            |            | \$   |      |            | \$   |      |
| Volume (veh/h)                | 13        | 1    | 25            | 14        | 1          | 19         | 6          | 238  | 18   | 30         | 290  | 7    |
| Sign Control                  |           | Stop |               |           | Stop       |            |            | Free |      |            | Free |      |
| Grade                         |           | 0%   |               |           | 0%         |            |            | 0%   |      |            | 0%   |      |
| Peak Hour Factor              | 0.88      | 0.88 | 0.88          | 0.88      | 0.88       | 0.88       | 0.88       | 0.88 | 0.88 | 0.88       | 0.88 | 0.88 |
| Hourly flow rate (vph)        | 15        | 1    | 28            | 16        | 1          | 22         | 7          | 270  | 20   | 34         | 330  | 8    |
| Pedestrians                   |           |      |               |           |            |            |            |      |      |            |      |      |
| Lane Width (ft)               |           |      |               |           |            |            |            |      |      |            |      |      |
| Walking Speed (ft/s)          |           |      |               |           |            |            |            |      |      |            |      |      |
| Percent Blockage              |           |      |               |           |            |            |            |      |      |            |      |      |
| Right turn flare (veh)        |           |      |               |           |            |            |            |      |      |            |      |      |
| Median type                   |           |      |               |           |            |            |            | None |      |            | None |      |
| Median storage veh)           |           |      |               |           |            |            |            | 1001 |      |            |      |      |
| Upstream signal (ft)          |           |      |               |           |            |            |            | 1034 |      |            |      |      |
| pX, platoon unblocked         | 74.0      | 70 ( | 004           | 705       | 700        | 001        | 000        |      |      | 001        |      |      |
| vC, conflicting volume        | /18       | /06  | 334           | 725       | /00        | 281        | 338        |      |      | 291        |      |      |
| vC1, stage 1 conf vol         |           |      |               |           |            |            |            |      |      |            |      |      |
| VC2, stage 2 cont vol         | 710       | 707  | 224           | 705       | 700        | 201        | 220        |      |      | 201        |      |      |
|                               | / 18      | /06  | 334           | 725       | /00        | 281        | 338        |      |      | 291        |      |      |
| tC, single (s)                | 7.1       | 0.0  | 0.2           | 7.1       | 0.0        | 0.2        | 4.1        |      |      | 4.1        |      |      |
| C, Z SIAYE (S)                | 2 5       | 10   | 2.2           | 25        | 10         | 2.2        | <b></b>    |      |      | າາ         |      |      |
| n anono troo %                | 3.0<br>05 | 4.0  | 0.5<br>06     | 3.0<br>05 | 4.0        | 3.3<br>07  | 2.2        |      |      | 2.2        |      |      |
| pu queue nee 70               | 90<br>200 | 251  | 90<br>712     | 320       | 254        | 763        | 77<br>1722 |      |      | 97<br>1265 |      |      |
|                               | J20       | 501  | /13           | 520       | 554        | 705        | 1233       |      |      | 1205       |      |      |
| Direction, Lane #             | EB 1      | WB 1 | NB 1          | SB 1      |            |            |            |      |      |            |      |      |
| Volume Total                  | 44        | 39   | 298           | 372       |            |            |            |      |      |            |      |      |
| Volume Left                   | 15        | 16   | 7             | 34        |            |            |            |      |      |            |      |      |
| Volume Right                  | 28        | 22   | 20            | 8         |            |            |            |      |      |            |      |      |
| cSH                           | 503       | 476  | 1233          | 1265      |            |            |            |      |      |            |      |      |
| Volume to Capacity            | 0.09      | 0.08 | 0.01          | 0.03      |            |            |            |      |      |            |      |      |
| Queue Length 95th (ft)        | /         | /    | 0             | 2         |            |            |            |      |      |            |      |      |
| Control Delay (s)             | 12.9      | 13.2 | 0.2           | 1.0       |            |            |            |      |      |            |      |      |
| Lane LOS                      | 10 O      | B    | A             | A         |            |            |            |      |      |            |      |      |
| Approach Delay (s)            | 12.9      | 13.2 | 0.2           | 1.0       |            |            |            |      |      |            |      |      |
| Approach LOS                  | В         | В    |               |           |            |            |            |      |      |            |      |      |
| Intersection Summary          |           |      |               |           |            |            |            |      |      |            |      |      |
| Average Delay                 |           |      | 2.0           |           |            |            |            |      |      |            |      |      |
| Intersection Capacity Utiliza | ation     |      | 41.1%         | IC        | CU Level o | of Service |            |      | A    |            |      |      |
| Analysis Period (min)         |           |      | 15            |           |            |            |            |      |      |            |      |      |

| Lanes, Vol   | mes, Timings                                                |
|--------------|-------------------------------------------------------------|
| 5: Universit | / Drive/Old Arlington Heights Road & Arlington Heights Road |

10/3/2016

|                         | -     | $\mathbf{X}$ | 2    | F     | ×           | ť    | 3     | *     | ~    | L.    | ×     | *    |
|-------------------------|-------|--------------|------|-------|-------------|------|-------|-------|------|-------|-------|------|
| Lane Group              | SEL   | SET          | SER  | NWL   | NWT         | NWR  | NEL   | NET   | NER  | SWL   | SWT   | SWR  |
| Lane Configurations     | 5     | <b>≜1</b> 2  |      | 5     | <b>≜1</b> 6 |      |       | 416   |      |       | ፈቤ    |      |
| Volume (vph)            | 5     | 733          | 45   | 98    | 709         | 112  | 50    | 43    | 52   | 152   | 54    | 44   |
| Ideal Flow (vphpl)      | 1900  | 1900         | 1900 | 1900  | 1900        | 1900 | 1900  | 1900  | 1900 | 1900  | 1900  | 1900 |
| Storage Length (ft)     | 150   |              | 0    | 190   |             | 0    | 0     |       | 0    | 0     |       | 0    |
| Storage Lanes           | 1     |              | 0    | 1     |             | 0    | 0     |       | 0    | 0     |       | 0    |
| Taper Length (ft)       | 130   |              | -    | 100   |             | -    | 25    |       | -    | 25    |       | -    |
| Lane Util. Factor       | 1.00  | 0.95         | 0.95 | 1.00  | 0.95        | 0.95 | 0.95  | 0.95  | 0.95 | 0.95  | 0.95  | 0.95 |
| Frt                     |       | 0.991        |      |       | 0.980       |      |       | 0.946 |      |       | 0.974 |      |
| Flt Protected           | 0.950 |              |      | 0.950 |             |      |       | 0.983 |      |       | 0.971 |      |
| Satd. Flow (prot)       | 1805  | 3471         | 0    | 1770  | 3406        | 0    | 0     | 3240  | 0    | 0     | 3394  | 0    |
| Elt Permitted           | 0.318 | 0171         | 0    | 0.263 | 0.00        | Ū    | Ū     | 0.765 | Ū    | Ū     | 0.735 | U    |
| Satd. Flow (perm)       | 604   | 3471         | 0    | 490   | 3406        | 0    | 0     | 2522  | 0    | 0     | 2569  | 0    |
| Right Turn on Red       | 001   | 0171         | Yes  | 170   | 0.00        | Yes  | Ū     | 2022  | Yes  | Ū     | 2007  | Yes  |
| Satd. Flow (RTOR)       |       | 12           |      |       | 33          |      |       | 57    |      |       | 34    |      |
| Link Speed (mph)        |       | 30           |      |       | 30          |      |       | 30    |      |       | 30    |      |
| Link Distance (ft)      |       | 877          |      |       | 574         |      |       | 460   |      |       | 317   |      |
| Travel Time (s)         |       | 19.9         |      |       | 13.0        |      |       | 10.5  |      |       | 7.2   |      |
| Peak Hour Factor        | 0.92  | 0.92         | 0.92 | 0.92  | 0.92        | 0.92 | 0.92  | 0.92  | 0.92 | 0.92  | 0.92  | 0.92 |
| Heavy Vehicles (%)      | 0%    | 3%           | 4%   | 2%    | 4%          | 3%   | 0%    | 0%    | 10%  | 1%    | 0%    | 0%   |
| Shared Lane Traffic (%) | 0.70  | 0.10         | 170  | 270   | 170         | 0,0  | 0,0   | 070   | 1070 | 170   | 070   | 0.10 |
| Lane Group Flow (vph)   | 5     | 846          | 0    | 107   | 893         | 0    | 0     | 158   | 0    | 0     | 272   | 0    |
| Turn Type               | pm+pt | NA           | 0    | pm+pt | NA          | Ŭ    | Perm  | NA    | 0    | Perm  | NA    | 0    |
| Protected Phases        | 1     | 6            |      | 5     | 2           |      |       | 4     |      |       | 8     |      |
| Permitted Phases        | 6     |              |      | 2     |             |      | 4     |       |      | 8     |       |      |
| Detector Phase          | 1     | 6            |      | 5     | 2           |      | 4     | 4     |      | 8     | 8     |      |
| Switch Phase            |       |              |      |       |             |      |       |       |      |       |       |      |
| Minimum Initial (s)     | 3.0   | 4.0          |      | 3.0   | 4.0         |      | 2.0   | 2.0   |      | 2.0   | 2.0   |      |
| Minimum Split (s)       | 6.5   | 15.0         |      | 6.5   | 15.0        |      | 8.0   | 8.0   |      | 8.0   | 8.0   |      |
| Total Split (s)         | 10.0  | 38.0         |      | 10.0  | 38.0        |      | 22.0  | 22.0  |      | 22.0  | 22.0  |      |
| Total Split (%)         | 14.3% | 54.3%        |      | 14.3% | 54.3%       |      | 31.4% | 31.4% |      | 31.4% | 31.4% |      |
| Yellow Time (s)         | 3.5   | 4.5          |      | 3.5   | 4.5         |      | 4.5   | 4.5   |      | 4.5   | 4.5   |      |
| All-Red Time (s)        | 0.0   | 1.5          |      | 0.0   | 1.5         |      | 1.5   | 1.5   |      | 1.5   | 1.5   |      |
| Lost Time Adjust (s)    | 0.0   | 0.0          |      | 0.0   | 0.0         |      |       | 0.0   |      |       | 0.0   |      |
| Total Lost Time (s)     | 3.5   | 6.0          |      | 3.5   | 6.0         |      |       | 6.0   |      |       | 6.0   |      |
| Lead/Lag                | Lead  | Lag          |      | Lead  | Lag         |      |       |       |      |       |       |      |
| Lead-Lag Optimize?      |       | 0            |      |       | 0           |      |       |       |      |       |       |      |
| Recall Mode             | None  | Мах          |      | None  | Max         |      | None  | None  |      | None  | None  |      |
| Act Effct Green (s)     | 39.2  | 32.4         |      | 42.1  | 38.4        |      |       | 11.5  |      |       | 11.5  |      |
| Actuated g/C Ratio      | 0.62  | 0.51         |      | 0.66  | 0.60        |      |       | 0.18  |      |       | 0.18  |      |
| v/c Ratio               | 0.01  | 0.48         |      | 0.24  | 0.43        |      |       | 0.32  |      |       | 0.56  |      |
| Control Delay           | 4.6   | 12.4         |      | 5.7   | 8.5         |      |       | 17.1  |      |       | 25.6  |      |
| Queue Delay             | 0.0   | 0.0          |      | 0.0   | 0.0         |      |       | 0.0   |      |       | 0.0   |      |
| Total Delay             | 4.6   | 12.4         |      | 5.7   | 8.5         |      |       | 17.1  |      |       | 25.6  |      |
| LOS                     | А     | В            |      | А     | А           |      |       | В     |      |       | С     |      |
| Approach Delay          |       | 12.3         |      |       | 8.2         |      |       | 17.1  |      |       | 25.6  |      |
| Approach LOS            |       | В            |      |       | А           |      |       | В     |      |       | С     |      |
| Queue Length 50th (ft)  | 1     | 110          |      | 12    | 73          |      |       | 18    |      |       | 45    |      |
| Queue Length 95th (ft)  | 4     | 178          |      | 32    | 184         |      |       | 42    |      |       | 80    |      |
| Internal Link Dist (ft) |       | 797          |      |       | 494         |      |       | 380   |      |       | 237   |      |

5/2/2016 AM Futrue

Synchro 8 Report Page 1

| Lanes, Volumes, Tir   | nings   |       |           |             |       |       |         |    |          |
|-----------------------|---------|-------|-----------|-------------|-------|-------|---------|----|----------|
| 5: University Drive/C | ld Arli | ngton | Heights I | Road & Arli | ngton | Heigh | ts Road | 10 | /3/2016  |
|                       |         |       | ``        | ~           |       |       |         |    | <b>.</b> |

|      |                                               |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                   | ι Ç                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | × .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SEL  | SET                                           | SER                                                                                                                                                                                                                                              | NWL                                                                                                                                                                                                                                                                                                                                      | NWT                                                                                                                                                                                                                                                                                                                                                                               | NWR                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SWL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SWT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SWR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 150  |                                               |                                                                                                                                                                                                                                                  | 190                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 502  | 1772                                          |                                                                                                                                                                                                                                                  | 455                                                                                                                                                                                                                                                                                                                                      | 2064                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0    | 0                                             |                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0    | 0                                             |                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0    | 0                                             |                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.01 | 0.48                                          |                                                                                                                                                                                                                                                  | 0.24                                                                                                                                                                                                                                                                                                                                     | 0.43                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                               |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | SEL<br>150<br>502<br>0<br>0<br>0<br>0<br>0.01 | SEL         SET           150         1772           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0           0         0 | SEL         SET         SER           150         502         1772           0         0         0           0         0         0           0         0         0           0         0         0           0         0         0           0         0         0           0         0         0           0         0.01         0.48 | SEL         SET         SER         NWL           150         190           502         1772         455           0         0         0           0         0         0           0         0         0           0         0         0           0         0         0           0         0         0           0         0         0           0.01         0.48         0.24 | SEL         SET         SER         NWL         NWT           150         190         190           502         1772         455         2064           0         0         0         0           0         0         0         0           0         0         0         0           0         0         0         0           0         0         0         0           0         0         0         0           0.01         0.48         0.24         0.43 | SEL         SET         SER         NWL         NWT         NWR           150         190         190         190         190         190         190         190         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 | SEL         SET         SER         NWL         NWT         NWR         NEL           150         190         190         190         190         190         190         190         190         190         190         190         190         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 | SEL         SET         SER         NWL         NWT         NWR         NEL         NET           150         190         190         684         684         684         684         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <t< td=""><td>SEL         SET         SER         NWL         NWT         NWR         NEL         NET         NER           150         190         190         190         190         190         190         190         190         190         190         190         190         190         190         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100</td><td>SEL         SET         SER         NWL         NWT         NWR         NEL         NET         NER         SWL           150         190         190         190         190         190         190         190         190         190         190         190         190         190         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100</td><td>SEL         SET         SER         NWL         NWT         NWR         NEL         NET         NER         SWL         SWT           150         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100</td></t<> | SEL         SET         SER         NWL         NWT         NWR         NEL         NET         NER           150         190         190         190         190         190         190         190         190         190         190         190         190         190         190         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 | SEL         SET         SER         NWL         NWT         NWR         NEL         NET         NER         SWL           150         190         190         190         190         190         190         190         190         190         190         190         190         190         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 | SEL         SET         SER         NWL         NWT         NWR         NEL         NET         NER         SWL         SWT           150         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         190         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 |

| Area Type:                | Other         |                        |
|---------------------------|---------------|------------------------|
| Cycle Length: 70          |               |                        |
| Actuated Cycle Length: 6  | 3.7           |                        |
| Natural Cycle: 45         |               |                        |
| Control Type: Actuated-L  | Incoordinated |                        |
| Maximum v/c Ratio: 0.56   |               |                        |
| Intersection Signal Delay | : 12.4        | Intersection LOS: B    |
| Intersection Capacity Uti | ization 55.5% | ICU Level of Service B |
|                           |               |                        |

Analysis Period (min) 15

Splits and Phases: 5: University Drive/Old Arlington Heights Road & Arlington Heights Road

| ø1           | <b>№</b> <sub>02</sub> | ¥ø4  |
|--------------|------------------------|------|
| 10 s         | 38 s                   | 22 s |
| ₩ <b>0</b> 5 | × ø6                   | × 08 |
| 10 s         | 38 s                   | 22 s |

|                                | -           | $\mathbf{r}$ | 1     | -          | 1          | 1          |
|--------------------------------|-------------|--------------|-------|------------|------------|------------|
| Movement                       | EBT         | EBR          | WBL   | WBT        | NBL        | NBR        |
| Lane Configurations            | <b>4</b> 16 |              | 5     | <b>*</b> * |            | 1          |
| Volume (veh/h)                 | 1590        | 67           | 125   | 957        | 0          | 187        |
| Sign Control                   | Free        |              |       | Free       | Stop       |            |
| Grade                          | 0%          |              |       | 0%         | 0%         |            |
| Peak Hour Factor               | 0.89        | 0.89         | 0.89  | 0.89       | 0.89       | 0.89       |
| Hourly flow rate (vph)         | 1787        | 75           | 140   | 1075       | 0          | 210        |
| Pedestrians                    |             |              |       |            |            |            |
| Lane Width (ft)                |             |              |       |            |            |            |
| Walking Speed (ft/s)           |             |              |       |            |            |            |
| Percent Blockage               |             |              |       |            |            |            |
| Right turn flare (veh)         |             |              |       |            |            |            |
| Median type                    | None        |              |       | None       |            |            |
| Median storage veh)            |             |              |       |            |            |            |
| Upstream signal (ft)           |             |              |       |            |            |            |
| pX, platoon unblocked          |             |              |       |            |            |            |
| vC, conflicting volume         |             |              | 1862  |            | 2643       | 931        |
| vC1, stage 1 conf vol          |             |              |       |            |            |            |
| vC2, stage 2 conf vol          |             |              |       |            |            |            |
| vCu, unblocked vol             |             |              | 1862  |            | 2643       | 931        |
| tC, single (s)                 |             |              | 4.1   |            | 6.8        | 6.9        |
| tC, 2 stage (s)                |             |              |       |            |            |            |
| tF (s)                         |             |              | 2.2   |            | 3.5        | 3.3        |
| p0 queue free %                |             |              | 57    |            | 100        | 22         |
| cM capacity (veh/h)            |             |              | 325   |            | 11         | 270        |
| Direction, Lane #              | EB 1        | EB 2         | WB 1  | WB 2       | WB 3       | NB 1       |
| Volume Total                   | 1191        | 671          | 140   | 538        | 538        | 210        |
| Volume Left                    | 0           | 0            | 140   | 0          | 0          | 0          |
| Volume Right                   | 0           | 75           | 0     | 0          | 0          | 210        |
| cSH                            | 1700        | 1700         | 325   | 1700       | 1700       | 270        |
| Volume to Capacity             | 0.70        | 0.39         | 0.43  | 0.32       | 0.32       | 0.78       |
| Queue Length 95th (ft)         | 0           | 0            | 52    | 0          | 0          | 147        |
| Control Delay (s)              | 0.0         | 0.0          | 24.3  | 0.0        | 0.0        | 52.8       |
| Lane LOS                       |             |              | С     |            |            | F          |
| Approach Delay (s)             | 0.0         |              | 2.8   |            |            | 52.8       |
| Approach LOS                   |             |              |       |            |            | F          |
| Intersection Summary           |             |              |       |            |            |            |
| Average Delay                  |             |              | 4.4   |            |            |            |
| Intersection Capacity Utilizat | ion         |              | 64.3% | IC         | CU Level o | of Service |
| Analysis Period (min)          |             |              | 15    |            |            |            |

| HCM Unsignalized Intersection Capacity  | / Analysis         |
|-----------------------------------------|--------------------|
| 8: Old Arlington Heights Road & Country | / Lane/Martin Lane |

10/3/2016

|                                   | ≯         | -    | $\mathbf{r}$ | 1         | -          | *          | 1          | 1    | 1    | 1          | Ŧ    | ~    |
|-----------------------------------|-----------|------|--------------|-----------|------------|------------|------------|------|------|------------|------|------|
| Movement                          | EBL       | EBT  | EBR          | WBL       | WBT        | WBR        | NBL        | NBT  | NBR  | SBL        | SBT  | SBR  |
| Lane Configurations               |           | 4    |              |           | \$         |            |            | \$   |      |            | 4    |      |
| Volume (veh/h)                    | 5         | 0    | 10           | 15        | 0          | 35         | 7          | 174  | 7    | 9          | 201  | 8    |
| Sign Control                      |           | Stop |              |           | Stop       |            |            | Free |      |            | Free |      |
| Grade                             |           | 0%   |              |           | 0%         |            |            | 0%   |      |            | 0%   |      |
| Peak Hour Factor                  | 0.89      | 0.89 | 0.89         | 0.89      | 0.89       | 0.89       | 0.89       | 0.89 | 0.89 | 0.89       | 0.89 | 0.89 |
| Hourly flow rate (vph)            | 6         | 0    | 11           | 17        | 0          | 39         | 8          | 196  | 8    | 10         | 226  | 9    |
| Pedestrians                       |           |      |              |           |            |            |            |      |      |            |      |      |
| Lane Width (ft)                   |           |      |              |           |            |            |            |      |      |            |      |      |
| Walking Speed (ft/s)              |           |      |              |           |            |            |            |      |      |            |      |      |
| Percent Blockage                  |           |      |              |           |            |            |            |      |      |            |      |      |
| Right turn flare (veh)            |           |      |              |           |            |            |            |      |      |            |      |      |
| Median type                       |           |      |              |           |            |            |            | None |      |            | None |      |
| Median storage veh)               |           |      |              |           |            |            |            |      |      |            |      |      |
| Upstream signal (ft)              |           |      |              |           |            |            |            | 1034 |      |            |      |      |
| pX, platoon unblocked             | 505       | 170  |              |           | 170        | 100        | 005        |      |      | 0.00       |      |      |
| vC, conflicting volume            | 505       | 470  | 230          | 4//       | 470        | 199        | 235        |      |      | 203        |      |      |
| vC1, stage 1 conf vol             |           |      |              |           |            |            |            |      |      |            |      |      |
| vC2, stage 2 conf vol             | FOF       | 170  | 000          | 477       | 470        | 100        | 005        |      |      | 202        |      |      |
| VCU, UNDIOCKED VOI                | 505       | 470  | 230          | 4//       | 470        | 199        | 235        |      |      | 203        |      |      |
| tC, single (s)                    | 7.1       | 6.5  | 0.5          | 1.1       | 0.5        | 0.3        | 4.1        |      |      | 4.2        |      |      |
| tC, 2 stage (s)                   | 2 5       | 10   | 2.4          | 2 5       | 1.0        | 2.4        | 2.2        |      |      | 1 1        |      |      |
| IF (S)                            | 3.0       | 4.0  | 3.0          | 3.0       | 4.0        | 3.4<br>05  | 2.2        |      |      | 2.3        |      |      |
| pu queue nee %                    | 99<br>452 | 100  | 90<br>720    | 97<br>700 | 100        | 90         | 99<br>1244 |      |      | 99<br>1216 |      |      |
| civi capacity (venini)            | 400       | 400  | 130          | 409       | 400        | 031        | 1344       |      |      | 1310       |      |      |
| Direction, Lane #                 | EB 1      | WB 1 | NB 1         | SB 1      |            |            |            |      |      |            |      |      |
| Volume Total                      | 17        | 56   | 211          | 245       |            |            |            |      |      |            |      |      |
| Volume Left                       | 6         | 17   | 8            | 10        |            |            |            |      |      |            |      |      |
| Volume Right                      | 11        | 39   | 8            | 9         |            |            |            |      |      |            |      |      |
| cSH                               | 610       | 687  | 1344         | 1316      |            |            |            |      |      |            |      |      |
| Volume to Capacity                | 0.03      | 0.08 | 0.01         | 0.01      |            |            |            |      |      |            |      |      |
| Queue Length 95th (ft)            | 2         | /    | 0            | 1         |            |            |            |      |      |            |      |      |
| Control Delay (s)                 | 11.1      | 10.7 | 0.3          | 0.4       |            |            |            |      |      |            |      |      |
| Lane LOS                          | B         | B    | A            | A         |            |            |            |      |      |            |      |      |
| Approach Delay (s)                | 11.1      | 10.7 | 0.3          | 0.4       |            |            |            |      |      |            |      |      |
| Approach LUS                      | В         | В    |              |           |            |            |            |      |      |            |      |      |
| Intersection Summary              |           |      |              |           |            |            |            |      |      |            |      |      |
| Average Delay                     |           |      | 1.8          |           |            |            |            |      |      |            |      |      |
| Intersection Capacity Utilization | on        |      | 25.1%        | IC        | CU Level o | of Service |            |      | А    |            |      |      |
| Analysis Period (min)             |           |      | 15           |           |            |            |            |      |      |            |      |      |

|                                | ٦    | $\mathbf{\hat{z}}$ | •     | Ť    | ţ           | ∢          |
|--------------------------------|------|--------------------|-------|------|-------------|------------|
| Movement                       | EBL  | EBR                | NBL   | NBT  | SBT         | SBR        |
| Lane Configurations            | - M  |                    |       | र्स  | <b>≜</b> †} |            |
| Volume (veh/h)                 | 3    | 10                 | 1     | 185  | 224         | 2          |
| Sign Control                   | Stop |                    |       | Free | Free        |            |
| Grade                          | 0%   |                    |       | 0%   | 0%          |            |
| Peak Hour Factor               | 0.92 | 0.92               | 0.92  | 0.92 | 0.92        | 0.92       |
| Hourly flow rate (vph)         | 3    | 11                 | 1     | 201  | 243         | 2          |
| Pedestrians                    |      |                    |       |      |             |            |
| Lane Width (ft)                |      |                    |       |      |             |            |
| Walking Speed (ft/s)           |      |                    |       |      |             |            |
| Percent Blockage               |      |                    |       |      |             |            |
| Right turn flare (veh)         |      |                    |       |      |             |            |
| Median type                    |      |                    |       | None | None        |            |
| Median storage veh)            |      |                    |       |      |             |            |
| Upstream signal (ft)           |      |                    |       | 594  |             |            |
| pX, platoon unblocked          |      |                    |       |      |             |            |
| vC, conflicting volume         | 448  | 123                | 246   |      |             |            |
| vC1, stage 1 conf vol          |      |                    |       |      |             |            |
| vC2, stage 2 conf vol          |      |                    |       |      |             |            |
| vCu, unblocked vol             | 448  | 123                | 246   |      |             |            |
| tC, single (s)                 | 6.8  | 6.9                | 4.1   |      |             |            |
| tC, 2 stage (s)                |      |                    |       |      |             |            |
| tF (s)                         | 3.5  | 3.3                | 2.2   |      |             |            |
| p0 queue free %                | 99   | 99                 | 100   |      |             |            |
| cM capacity (veh/h)            | 544  | 912                | 1332  |      |             |            |
| Direction, Lane #              | EB 1 | NB 1               | SB 1  | SB 2 |             |            |
| Volume Total                   | 14   | 202                | 162   | 83   |             |            |
| Volume Left                    | 3    | 1                  | 0     | 0    |             |            |
| Volume Right                   | 11   | 0                  | 0     | 2    |             |            |
| cSH                            | 789  | 1332               | 1700  | 1700 |             |            |
| Volume to Capacity             | 0.02 | 0.00               | 0.10  | 0.05 |             |            |
| Queue Length 95th (ft)         | 1    | 0                  | 0     | 0    |             |            |
| Control Delay (s)              | 9.6  | 0.0                | 0.0   | 0.0  |             |            |
| Lane LOS                       | А    | А                  |       |      |             |            |
| Approach Delay (s)             | 9.6  | 0.0                | 0.0   |      |             |            |
| Approach LOS                   | А    |                    |       |      |             |            |
| Intersection Summary           |      |                    |       |      |             |            |
| Average Delay                  |      |                    | 0.3   |      |             |            |
| Intersection Capacity Utilizat | ion  |                    | 20.5% | IC   | CU Level c  | of Service |
| Analysis Period (min)          |      |                    | 15    |      |             |            |

|                               | -     | $\rightarrow$ | -        | -    | 1         | 1          |
|-------------------------------|-------|---------------|----------|------|-----------|------------|
| Movement                      | EBT   | EBR           | WBL      | WBT  | NBL       | NBR        |
| Lane Configurations           | 4Î    |               |          | र्स  | Ý         |            |
| Volume (veh/h)                | 4     | 0             | 2        | 13   | 0         | 11         |
| Sign Control                  | Free  |               |          | Free | Stop      |            |
| Grade                         | 0%    |               |          | 0%   | 0%        |            |
| Peak Hour Factor              | 0.92  | 0.92          | 0.92     | 0.92 | 0.92      | 0.92       |
| Hourly flow rate (vph)        | 4     | 0             | 2        | 14   | 0         | 12         |
| Pedestrians                   |       |               |          |      |           |            |
| Lane Width (ft)               |       |               |          |      |           |            |
| Walking Speed (ft/s)          |       |               |          |      |           |            |
| Percent Blockage              |       |               |          |      |           |            |
| Right turn flare (veh)        |       |               |          |      |           |            |
| Median type                   | None  |               |          | None |           |            |
| Median storage veh)           |       |               |          |      |           |            |
| Upstream signal (ft)          |       |               |          |      |           |            |
| pX, platoon unblocked         |       |               |          |      |           |            |
| vC, conflicting volume        |       |               | 4        |      | 23        | 4          |
| vC1, stage 1 conf vol         |       |               |          |      |           |            |
| vC2, stage 2 conf vol         |       |               |          |      |           |            |
| vCu, unblocked vol            |       |               | 4        |      | 23        | 4          |
| tC, single (s)                |       |               | 4.1      |      | 6.4       | 6.2        |
| tC, 2 stage (s)               |       |               |          |      |           |            |
| tF (s)                        |       |               | 2.2      |      | 3.5       | 3.3        |
| p0 queue free %               |       |               | 100      |      | 100       | 99         |
| cM capacity (veh/h)           |       |               | 1630     |      | 997       | 1085       |
| Direction Lane #              | FR 1  | WR 1          | NR 1     |      |           |            |
| Volume Total                  | /     | 16            | 12       |      |           |            |
| Volume Left                   | 4     | 2             | 0        |      |           |            |
| Volume Right                  | 0     | 0             | 12       |      |           |            |
|                               | 1700  | 1630          | 1085     |      |           |            |
| Volume to Canacity            | 0.00  | 0.00          | 0.01     |      |           |            |
| Ouque Length 95th (ft)        | 0.00  | 0.00          | 0.01     |      |           |            |
| Control Delay (s)             | 0.0   | 10            | 8.4      |      |           |            |
|                               | 0.0   | Δ             | Δ        |      |           |            |
| Approach Delay (s)            | 0.0   | 10            | 8.4      |      |           |            |
| Approach LOS                  | 0.0   | 1.0           | 0.4<br>A |      |           |            |
| Intersection Summary          |       |               |          |      |           |            |
|                               |       |               | 2 5      |      |           |            |
| Average Delay                 |       |               | 3.5      |      |           |            |
| Intersection Capacity Utiliza | ation |               | 13.3%    | IC   | U Level ( | of Service |
| Analysis Period (min)         |       |               | 15       |      |           |            |

| Lanes, Volumes, Timings                   |                               |
|-------------------------------------------|-------------------------------|
| 5: University Drive/Old Arlington Heights | Road & Arlington Heights Road |

10/3/2016

|                         | 4     | $\mathbf{X}$ | 2    | *     | ×           | ť    | 3     | *     | ~    | í,    | ×      | *~   |
|-------------------------|-------|--------------|------|-------|-------------|------|-------|-------|------|-------|--------|------|
| Lane Group              | SEL   | SET          | SER  | NWL   | NWT         | NWR  | NEL   | NET   | NER  | SWL   | SWT    | SWR  |
| Lane Configurations     | ሻ     | <b>4</b> 16  |      | ሻ     | <b>4</b> 16 |      |       | đЪ    |      |       | đ î þ  |      |
| Volume (vph)            | 25    | 799          | 42   | 76    | 933         | 206  | 54    | 62    | 124  | 246   | 54     | 23   |
| Ideal Flow (vphpl)      | 1900  | 1900         | 1900 | 1900  | 1900        | 1900 | 1900  | 1900  | 1900 | 1900  | 1900   | 1900 |
| Storage Length (ft)     | 150   |              | 0    | 190   |             | 0    | 0     |       | 0    | 0     |        | 0    |
| Storage Lanes           | 1     |              | 0    | 1     |             | 0    | 0     |       | 0    | 0     |        | 0    |
| Taper Length (ft)       | 130   |              |      | 100   |             |      | 25    |       |      | 25    |        |      |
| Lane Util. Factor       | 1.00  | 0.95         | 0.95 | 1.00  | 0.95        | 0.95 | 0.95  | 0.95  | 0.95 | 0.95  | 0.95   | 0.95 |
| Frt                     |       | 0.993        |      |       | 0.973       |      |       | 0.923 |      |       | 0.989  |      |
| Flt Protected           | 0.950 |              |      | 0.950 |             |      |       | 0.989 |      |       | 0.963  |      |
| Satd. Flow (prot)       | 1805  | 3542         | 0    | 1787  | 3478        | 0    | 0     | 3262  | 0    | 0     | 3400   | 0    |
| Flt Permitted           | 0.167 |              |      | 0.240 |             |      |       | 0.765 |      |       | 0.661  |      |
| Satd, Flow (perm)       | 317   | 3542         | 0    | 451   | 3478        | 0    | 0     | 2523  | 0    | 0     | 2334   | 0    |
| Right Turn on Red       |       |              | Yes  |       |             | Yes  |       |       | Yes  |       |        | Yes  |
| Satd. Flow (RTOR)       |       | 7            |      |       | 37          |      |       | 133   |      |       | 9      |      |
| Link Speed (mph)        |       | 30           |      |       | 30          |      |       | 30    |      |       | 30     |      |
| Link Distance (ft)      |       | 877          |      |       | 574         |      |       | 460   |      |       | 317    |      |
| Travel Time (s)         |       | 19.9         |      |       | 13.0        |      |       | 10.5  |      |       | 7.2    |      |
| Peak Hour Factor        | 0.93  | 0.93         | 0.93 | 0.93  | 0.93        | 0.93 | 0.93  | 0.93  | 0.93 | 0.93  | 0.93   | 0.93 |
| Heavy Vehicles (%)      | 0%    | 1%           | 5%   | 1%    | 1%          | 1%   | 0%    | 0%    | 2%   | 1%    | 0%     | 5%   |
| Shared Lane Traffic (%) |       |              |      |       |             |      |       |       |      |       |        |      |
| Lane Group Flow (vph)   | 27    | 904          | 0    | 82    | 1225        | 0    | 0     | 258   | 0    | 0     | 348    | 0    |
| Turn Type               | pm+pt | NA           | -    | pm+pt | NA          | -    | Perm  | NA    | -    | Perm  | NA     | -    |
| Protected Phases        | 1     | 6            |      | 5     | 2           |      |       | 4     |      |       | 8      |      |
| Permitted Phases        | 6     |              |      | 2     |             |      | 4     |       |      | 8     |        |      |
| Detector Phase          | 1     | 6            |      | 5     | 2           |      | 4     | 4     |      | 8     | 8      |      |
| Switch Phase            |       |              |      |       |             |      |       |       |      |       |        |      |
| Minimum Initial (s)     | 3.0   | 1.0          |      | 3.0   | 1.0         |      | 1.0   | 1.0   |      | 1.0   | 1.0    |      |
| Minimum Split (s)       | 6.5   | 15.0         |      | 6.5   | 15.0        |      | 8.0   | 8.0   |      | 8.0   | 8.0    |      |
| Total Split (s)         | 10.0  | 45.0         |      | 10.0  | 45.0        |      | 35.0  | 35.0  |      | 35.0  | 35.0   |      |
| Total Split (%)         | 11.1% | 50.0%        |      | 11.1% | 50.0%       |      | 38.9% | 38.9% |      | 38.9% | 38.9%  |      |
| Yellow Time (s)         | 3.5   | 4.5          |      | 3.5   | 4.5         |      | 4.5   | 4.5   |      | 4.5   | 4.5    |      |
| All-Red Time (s)        | 0.0   | 1.5          |      | 0.0   | 1.5         |      | 1.5   | 1.5   |      | 1.5   | 1.5    |      |
| Lost Time Adjust (s)    | 0.0   | 0.0          |      | 0.0   | 0.0         |      |       | 0.0   |      |       | 0.0    |      |
| Total Lost Time (s)     | 3.5   | 6.0          |      | 3.5   | 6.0         |      |       | 6.0   |      |       | 6.0    |      |
| Lead/Lag                | Lead  | Lag          |      | Lead  | Lag         |      |       |       |      |       |        |      |
| Lead-Lag Optimize?      |       | 5            |      |       | 5           |      |       |       |      |       |        |      |
| Recall Mode             | None  | Мах          |      | None  | Мах         |      | None  | None  |      | None  | None   |      |
| Act Effct Green (s)     | 46.7  | 39.6         |      | 48.5  | 43.6        |      |       | 17.5  |      |       | 17.5   |      |
| Actuated g/C Ratio      | 0.61  | 0.51         |      | 0.63  | 0.57        |      |       | 0.23  |      |       | 0.23   |      |
| v/c Ratio               | 0.09  | 0.50         |      | 0.21  | 0.62        |      |       | 0.38  |      |       | 1.02dl |      |
| Control Delay           | 6.9   | 14.8         |      | 7.5   | 14.5        |      |       | 13.9  |      |       | 32.2   |      |
| Queue Delay             | 0.0   | 0.0          |      | 0.0   | 0.0         |      |       | 0.0   |      |       | 0.0    |      |
| Total Delay             | 6.9   | 14.8         |      | 7.5   | 14.5        |      |       | 13.9  |      |       | 32.2   |      |
| LOS                     | А     | В            |      | А     | В           |      |       | В     |      |       | С      |      |
| Approach Delay          |       | 14.6         |      |       | 14.1        |      |       | 13.9  |      |       | 32.2   |      |
| Approach LOS            |       | В            |      |       | В           |      |       | В     |      |       | С      |      |
| Queue Length 50th (ft)  | 4     | 147          |      | 13    | 156         |      |       | 26    |      |       | 80     |      |
| Queue Length 95th (ft)  | 16    | 241          |      | 36    | 362         |      |       | 56    |      |       | 122    |      |
| Internal Link Dist (ft) |       | 797          |      |       | 494         |      |       | 380   |      |       | 237    |      |

5/2/2016 PM Future

Synchro 8 Report Page 1

| Lanes, Volumes,              | Timings      | naton             | Hoight | e Poor  | 4 8. Arl   | ington     | Heigh  | te Poo  | d   |     | 10   | /3/2016 |
|------------------------------|--------------|-------------------|--------|---------|------------|------------|--------|---------|-----|-----|------|---------|
|                              |              | ngion             | leigin | 5 11040 |            | ington     | Tieigi | 15 1/04 | u   |     | 10   | 5/2010  |
|                              | 4            | $\mathbf{X}$      | 2      |         | ×          | ť          | 3      | *       | ~   | С,  | *    | ×       |
| Lane Group                   | SEL          | SET               | SER    | NWL     | NWT        | NWR        | NEL    | NET     | NER | SWL | SWT  | SWR     |
| Turn Bay Length (ft)         | 150          |                   |        | 190     |            |            |        |         |     |     |      |         |
| Base Capacity (vph)          | 321          | 1825              |        | 398     | 1987       |            |        | 1047    |     |     | 898  |         |
| Starvation Cap Reductn       | 0            | 0                 |        | 0       | 0          |            |        | 0       |     |     | 0    |         |
| Spillback Cap Reductn        | 0            | 0                 |        | 0       | 0          |            |        | 0       |     |     | 0    |         |
| Storage Cap Reductn          | 0            | 0                 |        | 0       | 0          |            |        | 0       |     |     | 0    |         |
| Reduced v/c Ratio            | 0.08         | 0.50              |        | 0.21    | 0.62       |            |        | 0.25    |     |     | 0.39 |         |
| Intersection Summary         |              |                   |        |         |            |            |        |         |     |     |      |         |
| Area Type:                   | Other        |                   |        |         |            |            |        |         |     |     |      |         |
| Cycle Length: 90             |              |                   |        |         |            |            |        |         |     |     |      |         |
| Actuated Cycle Length: 76    | .9           |                   |        |         |            |            |        |         |     |     |      |         |
| Natural Cycle: 60            |              |                   |        |         |            |            |        |         |     |     |      |         |
| Control Type: Actuated-Ur    | ncoordinated |                   |        |         |            |            |        |         |     |     |      |         |
| Maximum v/c Ratio: 0.65      |              |                   |        |         |            |            |        |         |     |     |      |         |
| Intersection Signal Delay:   | 16.4         |                   |        | In      | tersectior | ו LOS: B   |        |         |     |     |      |         |
| Intersection Capacity Utiliz | zation 74.9% |                   |        | IC      | U Level    | of Service | D      |         |     |     |      |         |
| Analysis Period (min) 15     |              |                   |        |         |            |            |        |         |     |     |      |         |
| II Defended of Level De      | !            | the second second |        |         |            |            |        |         |     |     |      |         |

dl Defacto Left Lane. Recode with 1 though lane as a left lane.

Splits and Phases: 5: University Drive/Old Arlington Heights Road & Arlington Heights Road

| ø1           | ₩ <sub>02</sub> | <b>≯</b> ø4 |
|--------------|-----------------|-------------|
| 10 s         | 45 s            | 35 s        |
| <b>₽</b> _ø5 | ¥ø6             | × 98        |
| 10 s         | 45 s            | 35 s        |

|                             | -           | $\mathbf{r}$ | 1     | -        | 1          | 1          |
|-----------------------------|-------------|--------------|-------|----------|------------|------------|
| Movement                    | EBT         | EBR          | WBL   | WBT      | NBL        | NBR        |
| Lane Configurations         | <b>≜</b> 16 |              | ሻ     | <b>^</b> |            | 1          |
| Volume (veh/h)              | 1086        | 92           | 220   | 1378     | 0          | 248        |
| Sign Control                | Free        |              |       | Free     | Stop       |            |
| Grade                       | 0%          |              |       | 0%       | 0%         |            |
| Peak Hour Factor            | 0.95        | 0.95         | 0.95  | 0.95     | 0.95       | 0.95       |
| Hourly flow rate (vph)      | 1143        | 97           | 232   | 1451     | 0          | 261        |
| Pedestrians                 |             |              |       |          |            |            |
| Lane Width (ft)             |             |              |       |          |            |            |
| Walking Speed (ft/s)        |             |              |       |          |            |            |
| Percent Blockage            |             |              |       |          |            |            |
| Right turn flare (veh)      |             |              |       |          |            |            |
| Median type                 | None        |              |       | None     |            |            |
| Median storage veh)         |             |              |       |          |            |            |
| Upstream signal (ft)        |             |              |       |          |            |            |
| pX, platoon unblocked       |             |              |       |          |            |            |
| vC, conflicting volume      |             |              | 1240  |          | 2380       | 620        |
| vC1, stage 1 conf vol       |             |              |       |          |            |            |
| vC2, stage 2 conf vol       |             |              |       |          |            |            |
| vCu, unblocked vol          |             |              | 1240  |          | 2380       | 620        |
| tC, single (s)              |             |              | 4.1   |          | 6.8        | 6.9        |
| tC, 2 stage (s)             |             |              |       |          |            |            |
| tF (s)                      |             |              | 2.2   |          | 3.5        | 3.3        |
| p0 queue free %             |             |              | 59    |          | 100        | 40         |
| cM capacity (veh/h)         |             |              | 563   |          | 17         | 433        |
| Direction, Lane #           | EB 1        | EB 2         | WB 1  | WB 2     | WB 3       | NB 1       |
| Volume Total                | 762         | 478          | 232   | 725      | 725        | 261        |
| Volume Left                 | 0           | 0            | 232   | 0        | 0          | 0          |
| Volume Right                | 0           | 97           | 0     | 0        | 0          | 261        |
| cSH                         | 1700        | 1700         | 563   | 1700     | 1700       | 433        |
| Volume to Capacity          | 0.45        | 0.28         | 0.41  | 0.43     | 0.43       | 0.60       |
| Queue Length 95th (ft)      | 0           | 0            | 50    | 0        | 0          | 96         |
| Control Delay (s)           | 0.0         | 0.0          | 15.8  | 0.0      | 0.0        | 25.1       |
| Lane LOS                    |             |              | С     |          |            | D          |
| Approach Delay (s)          | 0.0         |              | 2.2   |          |            | 25.1       |
| Approach LOS                |             |              |       |          |            | D          |
| Intersection Summary        |             |              |       |          |            |            |
| Average Delay               |             |              | 3.2   |          |            |            |
| Intersection Capacity Utili | zation      |              | 55.0% | 10       | CU Level o | of Service |
| Analysis Period (min)       |             |              | 15    |          |            |            |
|                             |             |              | 10    |          |            |            |

| HCM Unsignalized Intersection Capacity  | / Analysis         |
|-----------------------------------------|--------------------|
| 8: Old Arlington Heights Road & Country | / Lane/Martin Lane |

10/3/2016

|                                   | ≯    | -    | $\mathbf{r}$ | 1    | -          | *          | ٩.   | 1    | 1    | 1    | Ŧ    | ~    |
|-----------------------------------|------|------|--------------|------|------------|------------|------|------|------|------|------|------|
| Movement                          | EBL  | EBT  | EBR          | WBL  | WBT        | WBR        | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
| Lane Configurations               |      | 4    |              |      | \$         |            |      | \$   |      |      | \$   |      |
| Volume (veh/h)                    | 15   | 1    | 28           | 14   | 1          | 19         | 11   | 242  | 18   | 30   | 300  | 13   |
| Sign Control                      |      | Stop |              |      | Stop       |            |      | Free |      |      | Free |      |
| Grade                             |      | 0%   |              |      | 0%         |            |      | 0%   |      |      | 0%   |      |
| Peak Hour Factor                  | 0.88 | 0.88 | 0.88         | 0.88 | 0.88       | 0.88       | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 |
| Hourly flow rate (vph)            | 17   | 1    | 32           | 16   | 1          | 22         | 12   | 275  | 20   | 34   | 341  | 15   |
| Pedestrians                       |      |      |              |      |            |            |      |      |      |      |      |      |
| Lane Width (ft)                   |      |      |              |      |            |            |      |      |      |      |      |      |
| Walking Speed (ft/s)              |      |      |              |      |            |            |      |      |      |      |      |      |
| Percent Blockage                  |      |      |              |      |            |            |      |      |      |      |      |      |
| Right turn flare (veh)            |      |      |              |      |            |            |      |      |      |      |      |      |
| Median type                       |      |      |              |      |            |            |      | None |      |      | None |      |
| Median storage veh)               |      |      |              |      |            |            |      |      |      |      |      |      |
| Upstream signal (ft)              |      |      |              |      |            |            |      | 1034 |      |      |      |      |
| pX, platoon unblocked             |      |      |              |      |            |            |      |      |      |      |      |      |
| vC, conflicting volume            | 749  | 737  | 348          | 759  | 734        | 285        | 356  |      |      | 295  |      |      |
| vC1, stage 1 conf vol             |      |      |              |      |            |            |      |      |      |      |      |      |
| vC2, stage 2 conf vol             |      |      |              |      |            |            |      |      |      |      |      |      |
| vCu, unblocked vol                | 749  | 737  | 348          | 759  | 734        | 285        | 356  |      |      | 295  |      |      |
| tC, single (s)                    | 7.1  | 6.5  | 6.2          | 7.1  | 6.5        | 6.2        | 4.1  |      |      | 4.1  |      |      |
| tC, 2 stage (s)                   |      |      |              |      |            |            |      |      |      |      |      |      |
| tF (s)                            | 3.5  | 4.0  | 3.3          | 3.5  | 4.0        | 3.3        | 2.2  |      |      | 2.2  |      |      |
| p0 queue free %                   | 95   | 100  | 95           | 95   | 100        | 97         | 99   |      |      | 97   |      |      |
| cM capacity (veh/h)               | 311  | 336  | 699          | 301  | 337        | 759        | 1214 |      |      | 1260 |      |      |
| Direction, Lane #                 | EB 1 | WB 1 | NB 1         | SB 1 |            |            |      |      |      |      |      |      |
| Volume Total                      | 50   | 39   | 308          | 390  |            |            |      |      |      |      |      |      |
| Volume Left                       | 17   | 16   | 12           | 34   |            |            |      |      |      |      |      |      |
| Volume Right                      | 32   | 22   | 20           | 15   |            |            |      |      |      |      |      |      |
| cSH                               | 483  | 456  | 1214         | 1260 |            |            |      |      |      |      |      |      |
| Volume to Capacity                | 0.10 | 0.08 | 0.01         | 0.03 |            |            |      |      |      |      |      |      |
| Queue Length 95th (ft)            | 9    | 7    | 1            | 2    |            |            |      |      |      |      |      |      |
| Control Delay (s)                 | 13.3 | 13.6 | 0.4          | 0.9  |            |            |      |      |      |      |      |      |
| Lane LOS                          | В    | В    | А            | А    |            |            |      |      |      |      |      |      |
| Approach Delay (s)                | 13.3 | 13.6 | 0.4          | 0.9  |            |            |      |      |      |      |      |      |
| Approach LOS                      | В    | В    |              |      |            |            |      |      |      |      |      |      |
| Intersection Summary              |      |      |              |      |            |            |      |      |      |      |      |      |
| Average Delay                     |      |      | 2.1          |      |            |            |      |      |      |      |      |      |
| Intersection Capacity Utilization | n    |      | 38.4%        | IC   | CU Level o | of Service |      |      | А    |      |      |      |
| Analysis Period (min)             |      |      | 15           |      |            |            |      |      |      |      |      |      |

|                                | ۶    | $\mathbf{\hat{z}}$ | •     | Ť    | Ļ           | ∢         |
|--------------------------------|------|--------------------|-------|------|-------------|-----------|
| Movement                       | EBL  | EBR                | NBL   | NBT  | SBT         | SBR       |
| Lane Configurations            | Y    |                    |       | र्स  | <b>≜</b> t≽ |           |
| Volume (veh/h)                 | 2    | 4                  | 4     | 269  | 335         | 7         |
| Sign Control                   | Stop |                    |       | Free | Free        |           |
| Grade                          | 0%   |                    |       | 0%   | 0%          |           |
| Peak Hour Factor               | 0.92 | 0.92               | 0.92  | 0.92 | 0.92        | 0.92      |
| Hourly flow rate (vph)         | 2    | 4                  | 4     | 292  | 364         | 8         |
| Pedestrians                    |      |                    |       |      |             |           |
| Lane Width (ft)                |      |                    |       |      |             |           |
| Walking Speed (ft/s)           |      |                    |       |      |             |           |
| Percent Blockage               |      |                    |       |      |             |           |
| Right turn flare (veh)         |      |                    |       |      |             |           |
| Median type                    |      |                    |       | None | None        |           |
| Median storage veh)            |      |                    |       |      |             |           |
| Upstream signal (ft)           |      |                    |       | 584  |             |           |
| pX, platoon unblocked          |      |                    |       |      |             |           |
| vC, conflicting volume         | 669  | 186                | 372   |      |             |           |
| vC1, stage 1 conf vol          |      |                    |       |      |             |           |
| vC2, stage 2 conf vol          |      |                    |       |      |             |           |
| vCu, unblocked vol             | 669  | 186                | 372   |      |             |           |
| tC, single (s)                 | 6.8  | 6.9                | 4.1   |      |             |           |
| tC, 2 stage (s)                |      |                    |       |      |             |           |
| tF (s)                         | 3.5  | 3.3                | 2.2   |      |             |           |
| p0 queue free %                | 99   | 99                 | 100   |      |             |           |
| cM capacity (veh/h)            | 394  | 831                | 1198  |      |             |           |
| Direction, Lane #              | EB 1 | NB 1               | SB 1  | SB 2 |             |           |
| Volume Total                   | 7    | 297                | 243   | 129  |             |           |
| Volume Left                    | 2    | 4                  | 0     | 0    |             |           |
| Volume Right                   | 4    | 0                  | 0     | 8    |             |           |
| cSH                            | 607  | 1198               | 1700  | 1700 |             |           |
| Volume to Capacity             | 0.01 | 0.00               | 0.14  | 0.08 |             |           |
| Queue Length 95th (ft)         | 1    | 0                  | 0     | 0    |             |           |
| Control Delay (s)              | 11.0 | 0.2                | 0.0   | 0.0  |             |           |
| Lane LOS                       | В    | А                  |       |      |             |           |
| Approach Delay (s)             | 11.0 | 0.2                | 0.0   |      |             |           |
| Approach LOS                   | В    |                    |       |      |             |           |
| Intersection Summary           |      |                    |       |      |             |           |
| Average Delay                  |      |                    | 0.2   |      |             |           |
| Intersection Capacity Utilizat | tion |                    | 27.4% | IC   | U Level o   | f Service |
| Analysis Period (min)          |      |                    | 15    |      |             |           |

|                             | -       | $\rightarrow$ | -     | -    | 1          | 1          |
|-----------------------------|---------|---------------|-------|------|------------|------------|
| Movement                    | EBT     | EBR           | WBL   | WBT  | NBL        | NBR        |
| Lane Configurations         | ţ,      |               |       | र्स  | Y          |            |
| Volume (veh/h)              | 39      | 0             | 11    | 14   | 0          | 5          |
| Sign Control                | Free    |               |       | Free | Stop       |            |
| Grade                       | 0%      |               |       | 0%   | 0%         |            |
| Peak Hour Factor            | 0.92    | 0.92          | 0.92  | 0.92 | 0.92       | 0.92       |
| Hourly flow rate (vph)      | 42      | 0             | 12    | 15   | 0          | 5          |
| Pedestrians                 |         |               |       |      |            |            |
| Lane Width (ft)             |         |               |       |      |            |            |
| Walking Speed (ft/s)        |         |               |       |      |            |            |
| Percent Blockage            |         |               |       |      |            |            |
| Right turn flare (veh)      |         |               |       |      |            |            |
| Median type                 | None    |               |       | None |            |            |
| Median storage veh)         |         |               |       |      |            |            |
| Upstream signal (ft)        |         |               |       |      |            |            |
| pX, platoon unblocked       |         |               |       |      |            |            |
| vC, conflicting volume      |         |               | 42    |      | 82         | 42         |
| vC1, stage 1 conf vol       |         |               |       |      |            |            |
| vC2, stage 2 conf vol       |         |               |       |      |            |            |
| vCu, unblocked vol          |         |               | 42    |      | 82         | 42         |
| tC, single (s)              |         |               | 4.1   |      | 6.4        | 6.2        |
| tC, 2 stage (s)             |         |               |       |      |            |            |
| tF (s)                      |         |               | 2.2   |      | 3.5        | 3.3        |
| p0 queue free %             |         |               | 99    |      | 100        | 99         |
| cM capacity (veh/h)         |         |               | 1580  |      | 919        | 1034       |
| Direction, Lane #           | EB 1    | WB 1          | NB 1  |      |            |            |
| Volume Total                | 42      | 27            | 5     |      |            |            |
| Volume Left                 | 0       | 12            | 0     |      |            |            |
| Volume Right                | 0       | 0             | 5     |      |            |            |
| cSH                         | 1700    | 1580          | 1034  |      |            |            |
| Volume to Capacity          | 0.02    | 0.01          | 0.01  |      |            |            |
| Oueue Length 95th (ft)      | 0       | 1             | 0     |      |            |            |
| Control Delay (s)           | 0.0     | 3.2           | 8.5   |      |            |            |
| Lane LOS                    |         | А             | А     |      |            |            |
| Approach Delay (s)          | 0.0     | 3.2           | 8.5   |      |            |            |
| Approach LOS                |         |               | А     |      |            |            |
| Intersection Summary        |         |               |       |      |            |            |
| Average Delay               |         |               | 1.8   |      |            |            |
| Intersection Capacity Utili | ization |               | 18.0% | IC   | CU Level o | of Service |
| Analysis Period (min)       |         |               | 15    |      |            |            |
|                             |         |               | 10    |      |            |            |