### January 2017

### Windsor Elementary School

### Traffic and Parking Study



Prepared for: Arlington Heights School District 25

### Eriksson Engineering Associates, Ltd.

145 Commerce Drive, Suite A

Grayslake, IL 60030

(847) 223-4804

601 W. Randolph St., Suite 500

Chicago, IL 60661

(312) 463-0551

### INTRODUCTION

Eriksson Engineering Associates, Ltd. (EEA) was retained by Arlington Heights School District 25 (AHSD 25) to conduct a traffic and parking study for the proposed expansion of Windsor Elementary School in Arlington Heights, Illinois.

The purpose of the study was to observe the existing traffic patterns around the school, determine the traffic characteristics of the existing and expanded school, review the parking needs, and develop roadway and parking recommendations.

### **EXISTING CONDITIONS**

### Site Location and Area Land-Uses

Windsor Elementary School is located at 1315 East Miner Street in Arlington Heights, Illinois. The site is bounded by Windsor Drive to the east, Miner Street to the north, single-family homes to the south, and Miner School/soccer fields to the west. Miner School is a therapeutic day school run by the Northwest Suburban Special Education Organization (NSSEO). **Figure 1** illustrates the site location and the surrounding land-uses and roads. (Note: all figures are located at the end of the report).

### **Bicycle and Pedestrian Routes**

Miner Street and Windsor Drive are designated on-street bike routes. Public sidewalks are located on both sides of each street around the school. The All-Way Stop Controlled (AWSC) intersection of Miner Street and Windsor Drive has crosswalks on the east, west, and south legs. The intersection of Kensington Road and Windsor Drive has crosswalks on the north, south, and west legs. During arrival and dismissal, one adult crossing guard is located at each of these intersections. Two student crossing guards assist at the Miner/Windsor and a third monitors the west lot parking entrance sidewalk crossing.

### **Roadway Characteristics**

A description of the area roadways accessing the school is provided below:

**Kensington Road** is an east-west secondary arterial roadway with one travel lane in each direction and a center painted median. It has a 30 mph speed limit with a 20 mph school speed limit approaching the Windsor Drive intersection. At Windsor Drive, the center left-turn median is painted as separate eastbound and westbound left-turn lanes. High visibility crosswalks are provided on the north, south, and west legs. Kensington Road is under the jurisdiction of the Village of Arlington Heights.

**Miner Street** is an east-west collector roadway. It has a 25 mph speed limit with a 20 mph school speed limit by Windsor Elementary and Miner Schools. At its All-Way-Stop Controlled (AWSC) intersection with Windsor Drive, it has one travel lane in each direction and high visibility pedestrian crosswalks on the east, west, and south legs. Adjacent to the school property, the south side of Minor Street is posted as a student pick-up/drop-off zone from 8-9 AM and 3-4 PM on school days from the school sign to Windsor Drive. Miner Street is under the jurisdiction of the Village of Arlington Heights.

**Windsor Drive** is a north-south local residential street. It has one lane in each direction and onstreet parking through the residential areas. It is under the jurisdiction of the Village of Arlington Heights with a 25 mph posted speed limit and a 20 mph school speed zone. It is a designated on-street bike route. Adjacent to the school property, the west side of Windsor

### Windsor Elementary School Traffic Study

### ERIKSSON ENGINEERING ASSOCIATES, LTD.

Drive is posted as a student pick-up/drop-off zone from 8-9 AM and 3-4 PM on school days. The east side of Windsor is posted No Stopping or Standing - 8:00 AM to 4:00 PM on school days. Northbound Windsor Drive is posted with Do Not Enter signs at Campbell Street to the south of the site from 8:30 to 9:15 AM.

**Campbell Street (East and West)** is an east-west residential street south of the school with an offset intersection at Windsor Drive. It is under the jurisdiction of the Village of Arlington Heights with a 25 mph posted speed limit. Both approaches are under stop-sign control at Windsor Drive.

### **Existing Traffic Volumes**

Weekday morning arrival (8:00-9:30 AM) and afternoon dismissal (3:00-4:30 PM) manual traffic counts were conducted along Windsor Drive and Miner Street. Peak-hours of school traffic occurred from 8:15 to 9:15 AM and 3:00 to 4:00 PM on a school weekday. Traffic volumes at Kensington Road and Windsor Drive peaked at 8:30-9:30 AM due to the level of commuter through traffic on Kensington Road. The existing traffic volumes are shown on **Figure 2** and included in the **Appendix**.

### School Observations

Windsor School does not provide bussing for its students due to its close proximity to the school's residential areas and a crossing guard is provided at Kensington Road.

The main student loading area is the west side of Windsor Drive south of Miner Street. Staff members assist in loading students out of or into the vehicle. During the morning arrival, parents drop-off their students in the parking lot with minimal congestion. Parents also park on Windsor Street north of Miner Street and at West Campbell Street and walk their students to school. In the afternoon dismissal, parents fill up the loading areas along the school frontage, Windsor Drive to the north, and at Campbell Street.

Student loading is also located in the staff/visitor parking lot on the west side of the school for parent drop-off and pick-up of special education students. Parents enter and exit the lot from Miner Street and travel counter-clockwise through the lot.

As with most other schools, congestion occurs in the area and lasts 10 to 15 minutes during the peak arrival and dismissal periods.

The traffic counts indicated that the northbound Windsor signage restricting traffic north of Campbell has not been very effective. After discussions with the school district and the Village of Arlington Heights, cones have placed in the northbound lane just north of Campbell Drive to enforce the restriction.

### SITE TRAFFIC CHARACTERISTICS

### Site Plan

The proposed building plan includes additional commons space, a new gym, and new classrooms. The west parking lot circulation was modified due to the encroachment of the expanded building to create separate inbound and outbound drives to the lot. Student loading will remain counter clockwise within the redesigned west lot.

### **School Trip Generation**

The school currently serves 509 Kindergarten thru 5<sup>th</sup> Grade students. Classroom hours are from 9:05 AM to 3:35 PM. Attendance boundaries are formed by Arlington Heights Road to the west, Northwest Highway to the southwest, Dale and Foster Avenues to the east, Euclid Avenue to the north, and Gregory Street to the south. A copy of the school boundary map is in the **Appendix**.

The school expansion will provide more room for the projected student population with a new gym and classrooms. The number of class rooms will increase from 28 rooms, including two mobile classrooms, to 32 permanent rooms. The mobile classrooms would be removed. Student population is expected to grow by 86 students to 595 students over the next five years. The number of staff is expected to grow from 88 to 95 persons.

Traffic estimates were made for the additional students using the traffic counts at the current school. The trip generation rates for the school are higher than the data provided by the Institute of Transportation Engineer's <u>Trip Generation</u>, 9<sup>th</sup> Ed. manual for elementary schools due to a higher percentage of automobile usage and no busing. The rate of vehicle trip generation was applied to the proposed increase in students with the results shown in **Table 1**.

| Scenario                              | Mo               | rning Ar | rival | Afterr | noon Dis | missal |
|---------------------------------------|------------------|----------|-------|--------|----------|--------|
| Scenario                              | In               | Out      | Total | In     | Out      | Total  |
| Trip Generation Based on Exist        | ing Traffic      | Volume   | 5     |        |          |        |
| Existing 509 Students                 | 222              | 182      | 404   | 131    | 140      | 271    |
| Total 595 Students                    | 259              | 213      | 472   | 153    | 164      | 317    |
| Net Additional Traffic                | +37              | +31      | +68   | +22    | +24      | +46    |
| ITE Trip Generation Compariso         | n <sup>(1)</sup> |          |       |        |          |        |
| Existing 509 Students                 | 126              | 103      | 229   | 64     | 78       | 142    |
| Total 595 Students                    | 147              | 121      | 268   | 75     | 92       | 167    |
| Net Additional Traffic <sup>(2)</sup> | +21              | +18      | +39   | +11    | +14      | +25    |

Table 1School Expansion Traffic Volumes

(1) ITE Trip Generation Manual, 9<sup>th</sup> Edition – Land Use Code 520 (Elementary School)

(2) For comparison only – Not used for analyses

Carpooling was explored as a means to reduce traffic at Windsor School. It has been EEA's experience that carpooling does not materially reduce the traffic volumes at an elementary grade level. One reason is that some carpooling already happens with families/neighbors that live near each other. Carpooling is less effective when the two parties live further away which

### Windsor Elementary School Traffic Study

### January 31, 2017

### ERIKSSON ENGINEERING ASSOCIATES, LTD.

result in longer travel time than driving right to the school. Other obstacles include after school schedules and the provision of car seats. The school district can still encourage parents to car pool and let interested families who contact each other and work out their own arrangements. However, the school district can't compel the families to carpool.

### Trip Assignment

The trip distribution for school is based on the existing traffic volumes at the school and the existing road network, and site plan. The future vehicular trips that are generated by the expansion were distributed to the area roadways based on the proposed expansion plan.

The west parking lot is currently used for staff and visitors to park and for the morning dropoff and afternoon pick-up of special education students who require assistance getting from the vehicle to the school building. In conjunction with the expansion of the school, a portion of the school's students will be shifted into the west lot to reduce the volume of loading traffic along Windsor Drive. The school has approximately 590 feet of frontage on Windsor Drive and will have 525 feet within the west parking lot. School officials are in the process of determining which students will be redirected to use the parking lot instead of the street to evenly distribute the traffic load. They may be selected by class or by geography (i.e. students living to the west would use the west lot resulting in less traffic at Windsor Drive and Miner Street intersection. When the school reaches its peak population of 595 students, 225 students will be directed to the west lot including 60 special education students and 165 other students. **Table 2** summarizes the existing and projected traffic volumes in the west lot and onstreet by the school.

| Scongrio                                | Mo  | rning Ar | rival | Afterr | noon Dis | missal |
|-----------------------------------------|-----|----------|-------|--------|----------|--------|
| Scenario                                | In  | Out      | Total | In     | Out      | Total  |
| Existing Traffic Volumes                |     |          |       |        |          |        |
| West Lot <sup>(1)</sup> – 55 students   | 96  | 57       | 153   | 56     | 65       | 121    |
| On-Street <sup>(2)</sup> – 454 students | 126 | 125      | 251   | 75     | 75       | 150    |
| Existing 509 Students                   | 222 | 182      | 404   | 131    | 140      | 271    |
| Projected Traffic Volumes               |     |          |       |        |          |        |
| West Lot <sup>(3)</sup> – 225 students  | 151 | 108      | 259   | 89     | 99       | 188    |
| On-Street <sup>(4)</sup> – 370 students | 108 | 105      | 213   | 64     | 65       | 129    |
| Total 595 Students                      | 259 | 213      | 472   | 153    | 164      | 317    |

Table 2 School Expansion Traffic Volumes

(1) Existing West Lot used by Staff, Visitors, and Special Education Student Loading (55 pupils)

(2) On-Street traffic using existing streets for loading or students walking

(3) Proposed West Lot used by staff, visitors, Special Education (60 pupils), and 165 other students.

(4) 19% reduction in on-street activity

**Figure 3** shows the Total Traffic volumes. The total volumes assume that the additional counter measures will be effective in restricting northbound traffic during the morning and afternoon dismissal periods on Windsor Drive, relocation of a portion of the existing school traffic to the west lot, and the new traffic using the west lot.

### Windsor Elementary School Traffic Study

### ANALYSES

### **Intersection Capacity Analyses**

An intersection's ability to accommodate traffic flow is based on the average control delay experienced by vehicles passing through the intersection. The intersection and individual traffic movements are assigned a level of service (LOS), ranging from A to F based on the control delay created by a traffic signal or stop sign. Control delay consists of the initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. LOS A has the best traffic flow and least delay. LOS E represents saturated or at capacity conditions. LOS F experiences oversaturated conditions and extensive delays. The Highway Capacity Manual definitions for levels of service and the corresponding control delay for both signalized and unsignalized intersections are shown in Table 3.

| Level of | Description                                         | Contro<br>(second | o <b>l Delay</b><br>s/vehicle) |
|----------|-----------------------------------------------------|-------------------|--------------------------------|
| Service  | •                                                   | Signals           | Stop Signs                     |
| А        | Minimal delay and few stops                         | <10               | <10                            |
| В        | Low delay with more stops                           | >10-20            | >10-15                         |
| С        | Light congestion                                    | >20-35            | >15-25                         |
| D        | Congestion is more noticeable with<br>longer delays | >35-55            | >25-35                         |
| Е        | High delays and number of stops                     | >55-80            | >35-50                         |
| F        | Unacceptable delays and over<br>capacity            | >80               | >50                            |

Table 3 Level of Service Criteria for Intersections

Source: Highway Capacity Manual 2010

Capacity analyses were conducted for each intersection using the computer program Highway Capacity Software (HCS) to determine the existing operating conditions of the access system. These analyses were performed for the school's peak arrival and dismissal periods. Table 4 shows the existing and future level of service results for each intersection. Copies of the capacity analysis summaries are included in the **Appendix**.

### Shared Exit onto Miner Street

The east-west parking lot along Miner Street has as exit only drive with northbound left- and right-turn lanes that is used by the staff parking at both schools and the Miner School loading area. It is located on the Miner School property. No changes are proposed to this intersection which will operate at a good level of service.

### Windsor School Access on Miner Street

The existing driveway just west of the school building serves the staff parking lot and the loading area for special needs students. Currently, the drive has one inbound and two outbound lanes (left and right). With the reconfiguration of the staff parking lot and loading zone, the access to this lot will be split into separate inbound and outbound drives. Inbound traffic will enter the new west driveway. Outbound traffic will exit the east driveway with two outbound lanes (left and right). Currently a single student crossing guard monitors the single

### Windsor Elementary School Traffic Study

driveway and helps students to crossing the drive. Two student crossing guards will be needed with the two drives for the parking lot.

| latere etter                                                        |             | AM A                  | rrival | PM Dis                | smissal |
|---------------------------------------------------------------------|-------------|-----------------------|--------|-----------------------|---------|
| Intersection                                                        | Movement    | Existing              | Future | Existing              | Future  |
| Shared School Lot<br>Exit Only<br>on Miner Street<br>(Two-Way Stop) | NB Lt/Rt    | B-11.0                | B-11.6 | B-12.7                | B-13.3  |
| Windsor School Lot<br>Entrance Only                                 | WB Left     | A-7.9 <sup>(1)</sup>  | A-8.0  | A-7.9 <sup>(1)</sup>  | A-8.0   |
| On Miner Street<br>(Two-Way Stop)                                   | NB Lt/Rt    | B-11.2 <sup>(1)</sup> |        | B-11.7 <sup>(1)</sup> |         |
| Windsor School Lot<br>Exit Only                                     | Nb Lt       |                       | B-11.0 |                       | B-11.6  |
| On Miner Street<br>(Two-Way Stop)                                   | NB Rt       |                       | A-9.3  | -                     | A-9.5   |
|                                                                     | SB Lt/Th/Rt | A-8.2                 | A-8.1  | A-7.7                 | A-7.6   |
| Windsor Drive                                                       | WB Lt/Th/Rt | A-9.3                 | A-9.0  | A-7.9                 | A-8.0   |
| (All-Way Stop)                                                      | NB Lt/Th/Rt | A-8.5                 | -      | A-7.9                 | -       |
|                                                                     | EB Lt/Th/Rt | A-8.4                 | A-8.4  | A-7.8                 | A-7.9   |
| West Campbell                                                       | NB Th/Lt    | A-8.5                 | A-8.4  | A-8.1                 | A-8.0   |
| (Two-Way Control)                                                   | EB Lt/Rt    | B-11.8                | B-11.3 | B-10.4                | B-10.2  |
| East Campbell                                                       | SB Th/Lt    | A-7.7                 | A-7.5  | A-7.8                 | A-7.5   |
| (Two-Way Control)                                                   | WB Lt/Rt    | B-14.4                | B-12.5 | B-12.7                | B-10.8  |
|                                                                     | SB Lt/Th/Rt | C-22.6                | C-19.8 | C-19.4                | C-17.7  |
| Windsor Drive                                                       | WB Left     | A-8.1                 | A-8.1  | A-8.0                 | A-8.0   |
| (Two-Way Stop)                                                      | NB Lt/Th/Rt | C-16.1                | C-15.1 | C-18.1                | C-15.8  |
|                                                                     | EB Left     | A-8.1                 | A-8.0  | A-8.3                 | A-8.3   |

Table 4Intersection Level of Service and Delay

(1) Currently a single full access driveway

### Windsor Drive at Miner Street

The all-way-stop intersection will continue to at an acceptable level of service. Periodic congestion does occur at the intersection when pedestrians cross and traffic is stopped. It is recommended to prohibit parking on east side of Windsor Drive, north of Miner Street, and on the north side of Miner Street, east of Windsor Drive where parking on both sides of the street restricts the sight distance and maneuverability of traffic by the intersection. Both sections would be approximately 250 feet long and the restriction would only apply to school days for designated hours.

### ERIKSSON ENGINEERING ASSOCIATES, LTD.

### **Campbell Street at Windsor Drive**

South of the school, a few students are dropped-off and picked-up in the Campbell Street (West). The existing restriction of morning traffic on northbound Windsor Drive has been supplemented with traffic cones provided by school staff to further enforce the restriction and is working well. It is recommended that this restriction be extended to the afternoon dismissal period (3:15 to 4:00 PM).

### Kensington Road at Windsor Drive

Due to the minimal increase in school traffic and better enforcement of the northbound Windsor restriction, the intersection will continue to work well and requires no additional improvements.

### **Operational Improvements**

It has been suggested that having additional staffing along the Windsor loading area by staff and volunteers to help students help ease some of the congestion issues by getting kids into and out of the cars faster. With the changes to the west parking lot and shifting students to that location, additional staffing for Windsor will not likely be needed with the reduction in its use. However, additional staffing will be needed in the west parking lot. The school district is in the process of evaluating the total number of staff and volunteers for each location. **Figure 4** shows the school loading zones.

### ERIKSSON ENGINEERING ASSOCIATES, LTD.

### PARKING

The existing school on-site parking supply provides a total of 89 parking spaces including two accessible spaces. With the proposed changes to the parking lot, there will be 96 regular spaces and five accessible spaces for a total of 101 spaces. Windsor and Minor Schools share additional parking to the west.

The Village of Arlington Heights Zoning Ordinance requires elementary schools to provide two parking spaces per each employee (95 staff) and one per classroom (32 rooms) for a total of 222 spaces. A parking variation of 121 spaces would be required. Land banked parking with 19 additional spaces is provided, if needed, in the future (See **Figure 5**).

National parking data is available from the Institute of Transportation Engineers (ITE) in their publication <u>Parking Generation</u>, 4<sup>th</sup> Edition for elementary schools (Land Use Code 520). The peak demand in the ITE data was 0.17 spaces per student (595 students) or 101 spaces.

Parking counts were conducted in May, 2016 after the morning arrival period which found only a few open spots on-site for staff and visitors (82 cars or 92% occupied). No on-street parking near Windsor School was observed. The school currently has 88 staff members but they are not all present on-site at the same time.

A second parking count was conducted on January 24, 2017. That count found 56 vehicles in the west parking lot (97%) and a total of 67 vehicles in the east-west lot between the two schools. Within the east-west lot, 30 vehicles were parked on the west side of the lot (Minor School parking) and 37 vehicles on the east side of the lot (Windsor School parking). The ease-west lot has 77 spaces of which 31 spaces are on Windsor School property. There were 10 empty spots in the middle between the two groups of vehicles.

The second count had a higher demand of 93 spaces for Windsor School (56+37 vehicles). Assuming an increase in parking for 95 school staff, the overall demand would be 100 spaces (95 staff and 5 visitors).

The remaining east-west parking lot for Minor School would have 46 spaces with 30 parked vehicles leaving 16 open spaces for additional off-street parking for either school to use.

Parking for special events at the school can be accommodated by a combination of the offstreet parking, shared parking at Miner School, and on-street parking by the school.

Windsor Elementary School Traffic Study

January 31, 2017

### SUMMARY

This report summarizes the results of traffic and parking study for the expansion of Windsor Elementary School in Arlington Heights, Illinois. The following recommendations were developed:

- 1. The morning restriction of northbound traffic on Windsor Drive between Campbell Street (West) and Miner Street, when reinforced by traffic cones, was effective in preventing traffic from going north past the school.
- 2. It is recommended that the northbound restriction be extended to the afternoon dismissal period (3:15 4:00 PM) to eliminate the opportunity for parents from improperly and unsafely picking up their kids by the school.
- 3. The west parking lot will be redesigned to accommodate 101 spaces with separate inbound and outbound access drives on Miner Street. This includes 5 required accessible parking spaces.
- 4. Parking counts at the school show that the 101 proposed parking spaces will serve the needs of the expanded school and a parking variation of 121 spaces would be required from the 222 spaces required by code.
- 5. Parking counts at the adjacent Miner School parking lot indicate that 16 empty parking spaces are available for either school to use when the expansion is completed.
- 6. A land banked parking plan with 19 additional spaces has been provided in case additional parking is needed in the future.
- 7. Parking restrictions should be considered on the east side of Windsor Drive, north of Miner Street, and on the north side of Miner Street, east of Windsor Drive Both sections would be approximately 250 feet long and the restriction would only apply to school days for designated hours.
- 8. The proposed school loading plan would allow additional students to use the west parking lot to spread out loading demand around the school. Approximately 225 students would be allowed to use the lot based on their grade level or home geography (to be determined). The overall demand along Windsor Drive would drop with this redistribution of school traffic.
- 9. As part of Item 8, school officials will review the number and location of staff and volunteers to assist in the loading of students in the west lot and along Windsor Drive and make adjustments as needed.

Windsor Elementary School Traffic Study





# Site Location and Area Roadways









## School Loading Zones







Figure 5

### Appendix

- School Boundary Map
- 2016 Total Counts
- Capacity Analyses







Intersection Counts Miner Street at Windsor Drive

Arlington Heights, Illinois

|              | Wir<br>So | uthboun        | ive<br>d | ₹ 3   | iner Stree<br>/estbounc | * *  | Win<br>No | dsor Dri <sup>,</sup><br>rthboun | d ke | Mi.<br>Ea | ner Stree<br>istbound | +    | 15     | 60     | Peak   |       | Pec   | lestria | n and l | Bicycle | Counts |        |     |
|--------------|-----------|----------------|----------|-------|-------------------------|------|-----------|----------------------------------|------|-----------|-----------------------|------|--------|--------|--------|-------|-------|---------|---------|---------|--------|--------|-----|
| Begin        | Right     |                | Left     | Right |                         | Left | Right     |                                  | Left | Right     |                       | Left | Minute | Minute | Hour   | North | ı Leg | East    | Leg     | South   | Leg    | West L | eg  |
| Time         | Turn      | Through        | Turn     | Turn  | Through                 | Turn | Turn 1    | [hrough                          | Turn | Turn T    | 'hrough               | Turn | Totals | Totals | Factor | Ped.  | Bike  | Ped.    | Bike    | Ped.    | Bike P | ed. B  | ike |
|              | Tuesda    | y May 1        | 7, 2016  |       |                         |      |           |                                  |      |           |                       |      |        |        |        |       |       |         |         |         |        |        |     |
| 8:00 AM      | 4         | 5              | 0        | 7     | 14                      | 0    | 0         | e                                | 9    | 5         | 4                     | 9    | 49     | 314    | 0.60   | 0     | 0     | 0       | 0       | 0       | 0      | 2      | 0   |
| 8:15 AM      | 4         | 6              | 0        | -     | 71                      | ო    | 0         | 4                                | ო    | e         | 8                     | 7    | 54     | 322    | 0.61   | -     | 0     | e       | 0       | 0       | 0      | -      | 0   |
| 8:30 AM      | 4         | 5              | 0        | 0     | 12                      | 21   | -         | 7                                | 5    | 1<br>4    | 10                    | \$   | 80     | 300    | 0.57   | 7     | 0     | -       | 0       | 8       | 0      | 26     | 0   |
| 8:45 AM      | -         | ~              | -        | -     | 11                      | 59   | 0         | -                                | Ŷ    | 32        | ~                     | 5    | 131    |        |        | 7     | 0     | 0       | 0       | œ       | -      | 38     | 0   |
| 9:00 AM      | 4         | 6              | 0        | 7     | 8                       | ო    | -         | \$                               | 7    | S         | 13                    | 4    | 57     |        |        | 0     | 0     | 0       | -       | e       | 0      | 0      | 0   |
| 9:15 AM      | 0         | 7              | 0        | 0     | 12                      | -    | -         | S                                | 7    | S         | 4                     | 0    | 32     |        |        | -     | 0     | -       | 0       | 0       | 0      | 0      | 0   |
| Total        | 17        | 37             | -        | 9     | 74                      | 87   | 3         | 21                               | 24   | 64        | 46                    | 23   |        |        |        | 16    | 0     | 5       | l       | 19      | -      | 67     | 0   |
| 8:15-9:15 AM | 13        | 30             | -        | 4     | 48                      | 86   | 7         | 13                               | 16   | 54        | 38                    | 17   | 322    |        |        | 15    | 0     | 4       | -       | 19      | -      | 65     | 0   |
|              |           |                |          |       |                         |      |           |                                  |      |           |                       |      |        |        |        |       |       |         |         |         |        |        | T   |
|              | Tuesda    | <u>y May 1</u> | 7, 2016  |       |                         |      |           |                                  |      |           |                       |      |        |        |        |       |       |         |         |         |        |        |     |
| 3:00 PM      | ო         | e              | -        | 2     | 7                       | 14   | 2         | 12                               | 9    | 6         | 11                    | 7    | 77     | 299    | 0.82   | l     | 0     | l       | 0       | 0       | 0      | 0      | 0   |
| 3:15 PM      | 5         | 6              | 5        | -     | 6                       | 7    | -         | 9                                | 6    | ~         | 1<br>4                | ო    | 76     | 287    | 0.79   | 0     | 0     | ო       | -       | ო       | 0      | 6      | 0   |
| 3:30 PM      | 7         | 10             | 2        | -     | 8                       | 1    | ო         | 14<br>14                         | ო    | 13        | 19                    | 5    | 91     | 279    | 0.77   | 12    | -     | -       | 0       | 50      | 0      | 62     | 0   |
| 3:45 PM      | 7         | 4              | -        | 0     | 12                      | -    | -         | 5                                | 2    | 6         | 16                    | 2    | 55     |        |        | 0     | 0     | ო       | 0       | 7       | 0      | 5      | 0   |
| 4:00 PM      | 5         | 9              | 2        | -     | 8                       | 7    | 0         | 10                               | 5    | 6         | 13                    | 4    | 65     |        |        | -     | 0     | -       | 0       | 0       | 0      | ~      | 0   |
| 4:15 PM      | 4         | 7              | 0        | 0     | 13                      | 0    | 1         | 10                               | 5    | 3         | 24                    | 1    | 68     |        |        | 1     | 0     | 1       | 0       | 5       | 0      | 1      | -   |
| Total        | 21        | 39             | 11       | 5     | 57                      | 35   | 8         | 57                               | 30   | 50        | 67                    | 22   |        |        |        | 15    | -     | 10      | -       | 60      | 0      | 84     | -   |
| 3:00-4:00 PM | 12        | 26             | 6        | 4     | 36                      | 33   | ~         | 37                               | 20   | 38        | 60                    | 17   | 299    |        |        | 13    | -     | 8       | -       | 55      | 0      | 76     | 0   |
|              |           |                |          |       |                         |      |           |                                  |      |           |                       |      |        |        |        |       |       |         |         |         |        |        |     |

ERIKSSON ENGINEERING ASSOCIATES, LTD.

Intersection Counts

| Campbell     | Street ( | at Win  | dsor D  | rive      |        |         |        |          | Arlingta | ∿n Heigh | ts, Illina | is        |      |       |           | ulAlE3, L | -    |
|--------------|----------|---------|---------|-----------|--------|---------|--------|----------|----------|----------|------------|-----------|------|-------|-----------|-----------|------|
|              |          |         |         |           |        |         |        |          |          |          |            |           |      |       |           |           |      |
|              | Windso   | r Drive | Campbe  | il Street | Windso | r Drive | Cambel | I Street |          |          |            |           |      |       |           |           |      |
|              | South    | punoc   | Westb   | bund      | Northk | punoc   | Eastb  | ound     | 15       | 60       | Peak       |           |      |       |           |           |      |
| Begin        | Right    | Left    | Right   | Left      | Right  | Left    | Right  | Left     | Minute   | Minute   | Hour       | North Leg | Eas  | ł Leg | South Leg | West      | Leg  |
| Time         | Turn     | Turn    | Turn    | Turn      | Turn   | Turn    | Turn   | Turn     | Totals   | Totals   | Factor     | Bike      | Ped. | Bike  | Bike      | Ped.      | Bike |
|              | Thursda  | y May 1 | 9, 2016 |           |        |         |        |          |          |          |            |           |      |       |           |           |      |
| 8:00 AM      | 0        | -       | 0       | 5         | -      | 0       | 0      | 0        | 7        | 16       | 0.44       | 0         | 0    | 0     | 0         | 0         | 0    |
| 8:15 AM      | 0        | -       | 0       | 5         | 7      | 0       | -      | -        | 10       | 98       | 0.47       | 0         | 0    | 0     | 0         | 0         | 0    |
| 8:30 AM      | 0        | 13      | 2       | _         | 7      | ო       | -      | 0        | 22       | 93       | 0.45       | 0         | 0    | 0     | 2         | 11        | -    |
| 8:45 AM      | 7        | 36      | -       | 4         | 4      | 4       | -      | 0        | 52       |          |            | ო         | œ    | 0     | ო         | 61        | 0    |
| 9:00 AM      | 0        | \$      | 0       | 5         | -      | 0       | 7      | 0        | 14       |          |            | 0         | -    | 0     | 0         | L         | 0    |
| 9:15 AM      | 0        | 2       | -       | 0         | 1      | 0       | L      | 0        | 5        |          |            | 0         | 0    | 0     | 0         | 0         | 0    |
| Total        | 2        | 59      | 4       | 20        | 11     | 7       | 9      | -        |          |          |            | S         | 6    | 0     | 5         | 73        | -    |
| 8:15-9:15 AM | 2        | 56      | ო       | 15        | 6      | ~       | Ŋ      | -        | 98       |          |            | e         | 6    | 0     | 5         | 73        | -    |
|              |          |         |         |           |        |         |        |          |          |          |            |           |      |       |           |           |      |
|              | Thursda  | y May 1 | 9, 2016 |           |        |         |        |          |          |          |            |           |      |       |           |           |      |
| 3:00 PM      | 0        | 2       | -       | с         | 2      | 2       | с      | 0        | 13       | 84       | 0.42       | 0         | 0    | 0     | 0         | ε         | 0    |
| 3:15 PM      | 0        | 2       | -       | ო         | ო      | -       | 0      | 0        | 10       | 84       | 0.42       | -         | 4    | 0     | 0         | 10        | 0    |
| 3:30 PM      | -        | 35      | 0       | 7         | ~      | 0       | 5      | 0        | 50       | 81       | 0.41       | 4         | 0    | 0     | 0         | 47        | 0    |
| 3:45 PM      | 7        | -       | -       | 2         | 2      | 0       | ო      | 0        | 11       |          |            | 0         | Ъ    | -     | 0         | 9         | 0    |
| 4:00 PM      | 0        | 4       | ო       | -         | 7      | 2       | 0      | _        | 13       |          |            | 0         | ო    | 0     | 0         | ~         | 0    |
| 4:15 PM      | 0        | 4       | 0       | -         | 7      | 0       | 0      | 0        | ~        |          |            | 0         | -    | 0     | 0         | 16        | 0    |

0 **0** 

**66** 

o **o** 

- **-**

**o** 10

ა **ი** 

84

- 0

= **=** 

ა **ო** 

18 **1** 

**1**2

**о ल** 

**4 6** 

ო **ო** 

3:00-4:00 PM

Total



Intersection Counts Kensington Road at Windsor Drive

Arlington Heights, Illinois

| -                                            |                                       |                          | ľ                   |              |               |           |                |                     |        |                      | -             |        |        |        |      |       |         |       |         |       | I    | T    |
|----------------------------------------------|---------------------------------------|--------------------------|---------------------|--------------|---------------|-----------|----------------|---------------------|--------|----------------------|---------------|--------|--------|--------|------|-------|---------|-------|---------|-------|------|------|
| Windsor Drive Kensingto<br>Southbound Westbo | sor Drive Kensingto<br>thbound Westbo | re Kensingto<br>I Westbo | Kensingto<br>Westbo | igto<br>stbc | n Roa<br>vund | 8         | Winds<br>North | sor Drive<br>Thound | ¥      | ensingtoi<br>Eastbou | n Road<br>und | 15     | 60     | Peak   |      | Pe    | destria | n and | Bicycle | Count | s    |      |
| Right Left Right                             | Left Right                            | Left Right               | Right               |              | Le            | Ť         | Right          | Le                  | ft Rig | 1ht                  | Left          | Minute | Minute | Hour   | Nort | ר Leg | East    | Leg   | South   | Leg   | West | Leg  |
| Turn Through Turn Turn Through               | irough Turn Turn Through              | Turn Turn Through        | Turn Through        | rough        | Tu            | ŗ         | Turn Thr       | ough Tu             | rn Tu  | rn Throuç            | gh Turn       | Totals | Totals | Factor | Ped. | Bike  | Ped.    | Bike  | Ped.    | Bike  | Ped. | Bike |
| hursday May 19, 2016                         | . May 19, 2016                        | 9, 2016                  |                     |              |               | $\square$ |                |                     |        |                      |               |        |        |        |      |       |         |       |         |       |      |      |
| 5 9 4 2 63                                   | 9 4 2 63                              | 4 2 63                   | 2 63                | 63           | [             |           | с              | 4                   | 9      | 47                   | -             | 147    | 621    | 0.69   | 0    | 0     |         | 0     | 2       | 0     | 0    | 0    |
| 6 12 3 <i>5</i> 50                           | 12 3 5 50                             | 3 5 50                   | 5 50                | 50           | ч             | +         | 0              | 4                   | -      | 51                   | 5             | 143    | 641    | 0.72   | 7    | 0     | 0       | 0     | 2       | 0     | 0    | 0    |
| 6 6 2 1 40                                   | <b>6</b> 2 1 40                       | 2 1 40                   | 1 40                | 40           | -             |           | 2              | 0                   | 5      | 36                   | 2             | 107    | 671    | 0.75   | 0    | 0     | 0       | 0     | 11      | 0     | 26   | 0    |
| 35 12 23 7 66                                | 12 23 7 66                            | 23 7 66                  | 7 66                | 66           | -             |           | 6              | 5 0                 | е<br>С | 62                   | 4             | 224    |        |        | œ    | 0     | 0       | 0     | 19      | 0     | 35   | 0    |
| 5 6 12 6 68                                  | 6 12 6 68                             | 12 6 68                  | 6 68                | 68           | ч)            | 10        | с              | 2                   | -      | 58                   | -             | 167    |        |        | 7    | 0     | 2       | 0     | ო       | 0     | ~    | 0    |
| 1 3 10 6 72                                  | 3 10 6 72                             | 10 6 72                  | 6 72                | 72           | л             | *         | 9              | 6                   | 0      | 19 (                 | 7             | 173    |        |        | 0    | 0     | 0       | 0     | 7       | 0     | 0    | 0    |
| 58 48 54 27 359                              | 48 54 27 359                          | 54 27 359                | 27 359              | 359          | ŕ             | 6         | 20             | 30 6                | 1      | 3 315                | 15            |        |        |        | 12   | 0     | З       | 0     | 39      | 0     | 68   | 0    |
| 52 36 40 19 224                              | 36 40 19 224                          | 40 19 224                | 19 224              | 224          | -             | -         | Ξ              | 20 2                | ~      | 207                  | 12            | 641    |        |        | 12   | •     | 2       | 0     | 35      | 0     | 68   | 0    |
| hursdav Mav 19, 2016                         | - May 19, 2016                        | 9. 2016                  |                     |              |               | ╉         |                |                     | +      |                      |               |        |        |        |      |       |         |       |         |       |      |      |
| 2 8 5 9 103                                  | 8 5 9 103                             | 5 9 103                  | 9 103               | 103          |               | ×         | с              | 8                   | 7      | 67                   | -             | 216    | 764    | 0.88   | ę    | 0     | -       | 0     | ~       | 0     | ę    | 0    |
| 5 2 5 11 89                                  | 2 5 11 89                             | 5 11 89                  | 11 89               | 89           | (1            | ~         | e              | 9                   | 0      | 55                   | с             | 181    | 743    | 0.95   | 7    | -     | -       | 0     | 5       | 0     | \$   | 0    |
| 11 9 9 7 88                                  | 9 9 7 88                              | 9 7 88                   | 7 88                | 88           | 0             | ~         | -              | 7                   | -      | 54                   | ~             | 196    | 762    | 0.95   | ~    | 0     | 0       | 0     | 18      | 0     | 43   | 0    |
| 6 5 4 2 69                                   | 5 4 2 69                              | 4 2 69                   | 2 69                | 69           | . 1           | <u> </u>  | 4              | 5 3                 | 5      | 61                   | 5             | 171    |        |        | ო    | 0     | -       | -     | Ŷ       | 0     | 5    | 0    |
| 6 10 6 7 85                                  | 10 6 7 85                             | 6 7 85                   | 7 85                | 85           | -             |           | 2              | 9 1                 | 7      | 62                   | 4             | 195    |        |        | 0    | 0     | ო       | 0     | ო       | 0     | 9    | 0    |
| 7 8 2 3 78                                   | 8 2 3 78                              | 2 3 78                   | 3 78                | 78           | 1             |           | 3              | 11 0                | -      | 81                   | 5             | 200    |        |        | -    | 0     | 1       | 0     | 6       | 0     | 16   | 0    |
| 37 42 31 39 512                              | 42 31 39 512                          | 31 39 512                | 39 512              | 512          | <del>-</del>  | 33        | 16             | 46 7                | -      | 1 380                | 1 25          |        |        |        | 16   | l     | 7       | l     | 45      | 0     | 79   | 0    |
| 24 24 23 29 349                              | 24 23 29 349                          | 23 29 349                | 29 349              | 349          | -             | _         | 1              | 26 6                |        | 1 237                | . 16          | 764    |        |        | 15   | -     | e       | -     | 36      | 0     | 57   | 0    |
|                                              |                                       |                          |                     |              |               |           |                |                     |        |                      |               |        |        |        |      |       |         |       |         |       |      |      |

| ERIKSSON | ENGINEERING | ASSOCIATES, LTD. |
|----------|-------------|------------------|
|          |             |                  |

Intersection Counts Miner Street at Windsor School Drive

Arlington Heights, Illinois

|                     | ycle Counts | g West Leg | Bike   |             | 0          | 0       | 0       | 0       | 0       | 0       | 0     | 0            | 0       | 0       | 0       | 0       | 0       | -       | -     | •            |
|---------------------|-------------|------------|--------|-------------|------------|---------|---------|---------|---------|---------|-------|--------------|---------|---------|---------|---------|---------|---------|-------|--------------|
|                     | an and Bic  | South Le   | Ped.   |             | -          | -       | 7       | 7       | ~       | -       | 14    | 12           | 0       | -       | 42      | 4       | -       | n       | 51    | 47           |
|                     | Pedestrie   | East Leg   | Bike   |             | 0          | 0       | -       | -       | 0       | 0       | 2     | 2            | 0       | 0       | 0       | 0       | 0       | 0       | 0     | 0            |
|                     | Peak        | Hour       | Factor |             | 0.74       | 0.75    | 0.61    |         |         |         |       |              | 69.0    | 0.78    | 0.74    |         |         |         |       |              |
|                     | 90          | Minute     | Totals |             | <i>177</i> | 153     | 125     |         |         |         |       |              | 121     | 137     | 130     |         |         |         |       |              |
|                     | 15          | Minute     | Totals |             | 90         | 37      | 29      | 51      | 36      | 6       |       | 153          | 14      | 30      | 33      | 44      | 30      | 23      |       | 121          |
| <b>Miner Street</b> | Eastbound   | Right      | Turn   |             | 68         | 21      | 15      | 21      | 12      | 4       | 112   | 69           | 9       | 13      | 8       | 13      | 14      | 15      | 69    | 40           |
| Jriveway            | pund        | Left       | Turn   |             | с          | 4       | с       | 15      | 16      | e       | 44    | 38           | 0       | 5       | 24      | 20      | 9       | e       | 58    | 49           |
| Windsor D           | Northb      | Right      | Turn   | 17, 2016    | Е          | ო       | 4       | ω       | 4       | -       | 23    | 19           | 4       | ო       | -       | 8       | 7       | -       | 74    | 16           |
| <b>Miner Street</b> | Westbound   | Left       | Turn   | Tuesday May | 15         | 6       | ~       | ~       | 4       | -       | 43    | 27           | 4       | 6       | 0       | ო       | ო       | 4       | 23    | 16           |
|                     |             | Begin      | Time   |             | 8:00 AM    | 8:15 AM | 8:30 AM | 8:45 AM | 9:00 AM | 9:15 AM | Total | 8:15-9:15 AM | 3:00 PM | 3:15 PM | 3:30 PM | 3:45 PM | 4:00 PM | 4:15 PM | Total | 3:00-4:00 PM |



### Intersection Counts

Miner Street at Shared Access Drive Arlington Heights, Illinois

|              | <b>Miner Street</b> | Windso  | r Drive |        |        |        |           |             |           |
|--------------|---------------------|---------|---------|--------|--------|--------|-----------|-------------|-----------|
|              | Westbound           | Northk  | ound    | 15     | 60     | Peak   | Pedestria | n and Bicyc | le Counts |
| Begin        | Left                | Right   | Left    | Minute | Minute | Hour   | East Leg  | South Leg   | West Leg  |
| Time         | Turn                | Turn    | Turn    | Totals | Totals | Factor | Bike      | Ped.        | Bike      |
|              | Tuesday May         | 17, 201 | 6       |        |        |        |           |             |           |
| 8:00 AM      | 0                   | 8       | 15      | 23     | 57     | 0.62   | 0         | 0           | 0         |
| 8:15 AM      | 0                   | -       | 12      | 13     | 44     | 0.79   | 0         | 2           | 0         |
| 8:30 AM      | 0                   | ო       | 4       | 7      | 34     | 0.61   | 1         | 5           | 0         |
| 8:45 AM      | 0                   | 4       | 10      | 14     |        |        | 1         | 0           | 0         |
| 9:00 AM      | -                   | 4       | 5       | 10     |        |        | 0         | 2           | 0         |
| 9:15 AM      | 0                   | 0       | 3       | 3      |        |        | 0         | L           | 0         |
| Total        | L                   | 20      | 49      |        |        |        | 2         | 01          | 0         |
| 8:15-9:15 AM | -                   | 12      | 31      | 44     |        |        | 2         | 6           | 0         |
|              |                     |         |         |        |        |        |           |             |           |
| 3:00 PM      | 0                   | 2       | 17      | 19     | 61     | 0.61   | 0         | 0           | 0         |
| 3:15 PM      | 0                   | ო       | ო       | \$     | 47     | 0.47   | 0         | -           | 0         |
| 3:30 PM      | 0                   | 4       | 21      | 25     | 45     | 0.45   | 0         | 30          | 0         |
| 3:45 PM      | 0                   | -       | 10      | 11     |        |        | 0         | 4           | 0         |
| 4:00 PM      | 0                   | 7       | ო       | 5      |        |        | 0         | L           | 0         |
| 4:15 PM      | 1                   | 0       | 3       | 4      |        |        | 0         | 0           | 1         |
| Total        | L L                 | 12      | 57      |        |        |        | 0         | 98          | l         |
| 3:00-4:00 PM | 0                   | 10      | 51      | 61     |        |        | 0         | 35          | 0         |
|              |                     |         |         |        |        |        |           |             |           |

|                          | HCS7 Two-Way Sto     | p-Control Report           |                   |
|--------------------------|----------------------|----------------------------|-------------------|
| General Information      |                      | Site Information           |                   |
| Analyst                  | AJB                  | Intersection               | Windsor/Campbell  |
| Agency/Co.               | Eriksson Engineering | Jurisdiction               | Arlington Heights |
| Date Performed           | 01/31/2017           | East/West Street           | Campbell Street   |
| Analysis Year            | 2016                 | North/South Street         | Windsor Drive     |
| Time Analyzed            | 8:15 - 9:15 AM       | Peak Hour Factor           | 0.47              |
| Intersection Orientation | North-South          | Analysis Time Period (hrs) | 0.25              |
| Project Description      | Proposed Conditions  |                            |                   |



### Vehicle Volumes and Adjustments

| · · · · · · · · · · · · · · · · · · ·   |        |         |        |      |       |      |       |   |    |       |       |   |    |       |       |    |
|-----------------------------------------|--------|---------|--------|------|-------|------|-------|---|----|-------|-------|---|----|-------|-------|----|
| Approach                                |        | Eastb   | ound   |      |       | West | bound |   |    | North | bound |   |    | South | bound |    |
| Movement                                | U      | L       | Т      | R    | U     | L    | Т     | R | U  | L     | Т     | R | U  | L     | Т     | R  |
| Priority                                |        | 10      | 11     | 12   |       | 7    | 8     | 9 | 10 | 1     | 2     | 3 | 4U | 4     | 5     | 6  |
| Number of Lanes                         |        | 0       | 0      | 0    |       | 0    | 0     | 0 | 0  | 0     | 1     | 0 | 0  | 0     | 1     | 0  |
| Configuration                           |        |         | LR     |      |       |      |       |   |    | LT    |       |   |    |       |       | TR |
| Volume, V (veh/h)                       |        | 1       |        | 5    |       |      |       |   |    | 7     | 0     |   |    |       | 150   | 2  |
| Percent Heavy Vehicles (%)              |        | 3       |        | 3    |       |      |       |   |    | 3     |       |   |    |       |       |    |
| Proportion Time Blocked                 |        |         |        |      |       |      |       |   |    |       |       |   |    |       |       |    |
| Percent Grade (%)                       |        | (       | )      |      |       |      |       |   |    |       |       |   |    |       |       |    |
| Right Turn Channelized                  |        | N       | lo     |      |       | Ν    | lo    |   |    | N     | 0     |   |    | Ν     | lo    |    |
| Median Type/Storage                     |        |         |        | Undi | vided |      |       |   |    |       |       |   |    |       |       |    |
| Critical and Follow-up He               | adwa   | ys      |        |      |       |      |       |   |    |       |       |   |    |       |       |    |
| Base Critical Headway (sec)             |        | 7.1     |        | 6.2  |       |      |       |   |    | 4.1   |       |   |    |       |       |    |
| Critical Headway (sec)                  |        | 7.13    |        | 6.23 |       |      |       |   |    | 4.13  |       |   |    |       |       |    |
| Base Follow-Up Headway (sec)            |        | 3.5     |        | 3.3  |       |      |       |   |    | 2.2   |       |   |    |       |       |    |
| Follow-Up Headway (sec)                 |        | 3.53    |        | 3.33 |       |      |       |   |    | 2.23  |       |   |    |       |       |    |
| Delay, Queue Length, and                | d Leve | el of S | ervice | e    |       |      |       |   |    |       |       |   |    |       |       |    |
| Flow Rate, v (veh/h)                    |        |         | 13     |      |       |      |       |   |    | 15    |       |   |    |       |       |    |
| Capacity, c (veh/h)                     |        |         | 587    |      |       |      |       |   |    | 1077  |       |   |    |       |       |    |
| v/c Ratio                               |        |         | 0.02   |      |       |      |       |   |    | 0.01  |       |   |    |       |       |    |
| 95% Queue Length, Q <sub>95</sub> (veh) |        |         | 0.1    |      |       |      |       |   |    | 0.0   |       |   |    |       |       |    |
| Control Delay (s/veh)                   |        |         | 11.3   |      |       |      |       |   |    | 8.4   |       |   |    |       |       |    |
| Level of Service, LOS                   |        |         | В      |      |       |      |       |   |    | А     |       |   |    |       |       |    |
| Approach Delay (s/veh)                  |        | 11      | L.3    |      |       |      |       |   |    | 8     | .4    |   |    |       |       |    |
| Approach LOS                            |        | I       | 3      |      |       |      |       |   |    |       |       |   |    |       |       |    |

|                          | HCS7 Two-Way Sto     | p-Control Report           |                   |  |  |  |  |  |  |
|--------------------------|----------------------|----------------------------|-------------------|--|--|--|--|--|--|
| General Information      |                      | Site Information           |                   |  |  |  |  |  |  |
| Analyst                  | AJB                  | Intersection               | Windsor/Campbell  |  |  |  |  |  |  |
| Agency/Co.               | Eriksson Engineering | Jurisdiction               | Arlington Heights |  |  |  |  |  |  |
| Date Performed           | 01/31/2017           | East/West Street           | Campbell Street   |  |  |  |  |  |  |
| Analysis Year            | 2016                 | North/South Street         | Windsor Drive     |  |  |  |  |  |  |
| Time Analyzed            | 3:00 - 4:00 PM       | Peak Hour Factor           | 0.42              |  |  |  |  |  |  |
| Intersection Orientation | North-South          | Analysis Time Period (hrs) | 0.25              |  |  |  |  |  |  |
| Project Description      | Proposed Conditions  |                            |                   |  |  |  |  |  |  |



### Vehicle Volumes and Adjustments

| Approach                                |        | Eacth   | ound   |      |       | Worth | ound  |   |    | North | bound |   |    | South | _     |    |
|-----------------------------------------|--------|---------|--------|------|-------|-------|-------|---|----|-------|-------|---|----|-------|-------|----|
| Арргоасп                                |        | EdSLD   | ouna   |      |       | west  | Jouna |   |    | North | Jouna |   |    | South | bound |    |
| Movement                                | U      | L       | Т      | R    | U     | L     | T     | R | U  | L     | T     | R | U  | L     | T     | R  |
| Priority                                |        | 10      | 11     | 12   |       | 7     | 8     | 9 | 10 | 1     | 2     | 3 | 4U | 4     | 5     | 6  |
| Number of Lanes                         |        | 0       | 0      | 0    |       | 0     | 0     | 0 | 0  | 0     | 1     | 0 | 0  | 0     | 1     | 0  |
| Configuration                           |        |         | LR     |      |       |       |       |   |    | LT    |       |   |    |       |       | TR |
| Volume, V (veh/h)                       |        | 0       |        | 11   |       |       |       |   |    | 3     | 0     |   |    |       | 83    | 3  |
| Percent Heavy Vehicles (%)              |        | 3       |        | 3    |       |       |       |   |    | 3     |       |   |    |       |       |    |
| Proportion Time Blocked                 |        |         |        |      |       |       |       |   |    |       |       |   |    |       |       |    |
| Percent Grade (%)                       |        | (       | C      |      |       |       |       |   |    |       |       |   |    |       |       |    |
| Right Turn Channelized                  |        | Ν       | lo     |      |       | N     | lo    |   |    | N     | 0     |   |    | Ν     | lo    |    |
| Median Type/Storage                     |        |         |        | Undi | vided |       |       |   |    |       |       |   |    |       |       |    |
| Critical and Follow-up He               | eadwa  | ys      |        |      |       |       |       |   |    |       |       |   |    |       |       |    |
| Base Critical Headway (sec)             |        | 7.1     |        | 6.2  |       |       |       |   |    | 4.1   |       |   |    |       |       |    |
| Critical Headway (sec)                  |        | 7.13    |        | 6.23 |       |       |       |   |    | 4.13  |       |   |    |       |       |    |
| Base Follow-Up Headway (sec)            |        | 3.5     |        | 3.3  |       |       |       |   |    | 2.2   |       |   |    |       |       |    |
| Follow-Up Headway (sec)                 |        | 3.53    |        | 3.33 |       |       |       |   |    | 2.23  |       |   |    |       |       |    |
| Delay, Queue Length, and                | d Leve | el of S | ervice | 9    |       |       |       |   |    |       |       |   |    |       |       |    |
| Flow Rate, v (veh/h)                    |        |         | 26     |      |       |       |       |   |    | 7     |       |   |    |       |       |    |
| Capacity, c (veh/h)                     |        |         | 715    |      |       |       |       |   |    | 1197  |       |   |    |       |       |    |
| v/c Ratio                               |        |         | 0.04   |      |       |       |       |   |    | 0.01  |       |   |    |       |       |    |
| 95% Queue Length, Q <sub>95</sub> (veh) |        |         | 0.1    |      |       |       |       |   |    | 0.0   |       |   |    |       |       |    |
| Control Delay (s/veh)                   |        |         | 10.2   |      |       |       |       |   |    | 8.0   |       |   |    |       |       |    |
| Level of Service, LOS                   |        |         | В      |      |       |       |       |   |    | А     |       |   |    |       |       |    |
| Approach Delay (s/veh)                  |        | 10      | ).2    |      |       |       |       |   |    | 8     | .0    |   |    |       |       |    |
| Approach LOS                            |        |         | 3      |      |       |       |       |   |    |       |       |   |    |       |       |    |

| HCS7 Two-Way Stop-Control Report |                      |                            |                   |  |  |  |  |  |  |  |  |  |
|----------------------------------|----------------------|----------------------------|-------------------|--|--|--|--|--|--|--|--|--|
| General Information              |                      | Site Information           |                   |  |  |  |  |  |  |  |  |  |
| Analyst                          | АЈВ                  | Intersection               | Windsor/Campbell  |  |  |  |  |  |  |  |  |  |
| Agency/Co.                       | Eriksson Engineering | Jurisdiction               | Arlington Heights |  |  |  |  |  |  |  |  |  |
| Date Performed                   | 01/31/2017           | East/West Street           | Campbell Street   |  |  |  |  |  |  |  |  |  |
| Analysis Year                    | 2016                 | North/South Street         | Windsor Drive     |  |  |  |  |  |  |  |  |  |
| Time Analyzed                    | 8:15 - 9:15 AM       | Peak Hour Factor           | 0.47              |  |  |  |  |  |  |  |  |  |
| Intersection Orientation         | North-South          | Analysis Time Period (hrs) | 0.25              |  |  |  |  |  |  |  |  |  |
| Project Description              | Proposed Conditions  |                            |                   |  |  |  |  |  |  |  |  |  |



Major Street: North-South

| Vehicle Volumes and Ad                  | justmo | ents    |        |      |       |      |       |      |    |       |       |    |    |       |       |   |
|-----------------------------------------|--------|---------|--------|------|-------|------|-------|------|----|-------|-------|----|----|-------|-------|---|
| Approach                                | Τ      | Eastb   | ound   |      |       | West | bound |      |    | North | bound |    |    | South | bound |   |
| Movement                                | U      | L       | Т      | R    | U     | L    | Т     | R    | U  | L     | Т     | R  | U  | L     | Т     | R |
| Priority                                |        | 10      | 11     | 12   |       | 7    | 8     | 9    | 10 | 1     | 2     | 3  | 4U | 4     | 5     | 6 |
| Number of Lanes                         |        | 0       | 0      | 0    |       | 0    | 0     | 0    | 0  | 0     | 1     | 0  | 0  | 0     | 1     | 0 |
| Configuration                           |        |         |        |      |       |      | LR    |      |    |       |       | TR |    | LT    |       |   |
| Volume, V (veh/h)                       |        |         |        |      |       | 15   |       | 3    |    |       | 4     | 9  |    | 51    | 104   |   |
| Percent Heavy Vehicles (%)              |        |         |        |      |       | 3    |       | 3    |    |       |       |    |    | 3     |       |   |
| Proportion Time Blocked                 |        |         |        |      |       |      |       |      |    |       |       |    |    |       |       |   |
| Percent Grade (%)                       |        |         |        |      |       |      | 0     |      |    |       |       |    |    |       |       |   |
| Right Turn Channelized                  |        | Ν       | 10     |      |       | Ν    | 10    |      |    | ١     | ١o    |    |    | Ν     | 10    |   |
| Median Type/Storage                     |        |         |        | Undi | vided |      |       |      |    |       |       |    |    |       |       |   |
| <b>Critical and Follow-up H</b>         | eadwa  | iys     |        |      |       |      |       |      |    |       |       |    |    |       |       |   |
| Base Critical Headway (sec)             |        |         |        |      |       | 7.1  |       | 6.2  |    |       |       |    |    | 4.1   |       |   |
| Critical Headway (sec)                  |        |         |        |      |       | 7.13 |       | 6.23 |    |       |       |    |    | 4.13  |       |   |
| Base Follow-Up Headway (sec)            |        |         |        |      |       | 3.5  |       | 3.3  |    |       |       |    |    | 2.2   |       |   |
| Follow-Up Headway (sec)                 |        |         |        |      |       | 3.53 |       | 3.33 |    |       |       |    |    | 2.23  |       |   |
| Delay, Queue Length, an                 | d Leve | el of S | ervice | e    |       |      |       |      |    |       |       |    |    |       |       |   |
| Flow Rate, v (veh/h)                    |        |         |        |      |       |      | 38    |      |    |       |       |    |    | 109   |       |   |
| Capacity, c (veh/h)                     |        |         |        |      |       |      | 515   |      |    |       |       |    |    | 1553  |       |   |
| v/c Ratio                               |        |         |        |      |       |      | 0.07  |      |    |       |       |    |    | 0.07  |       |   |
| 95% Queue Length, Q <sub>95</sub> (veh) |        |         |        |      |       |      | 0.2   |      |    |       |       |    |    | 0.2   |       |   |
| Control Delay (s/veh)                   |        |         |        |      |       |      | 12.5  |      |    |       |       |    |    | 7.5   |       |   |
| Level of Service, LOS                   |        |         |        |      |       |      | В     |      |    |       |       |    |    | А     |       |   |
| Approach Delay (s/veh)                  |        |         |        |      |       | 12   | 2.5   |      |    |       |       |    |    | 2     | .9    |   |
| Approach LOS                            |        |         |        |      |       |      | в     |      |    |       |       |    |    |       |       |   |

Copyright © 2017 University of Florida. All Rights Reserved.

|                          | HCS7 Two-Wav Stor    | p-Control Report           |                   |  |  |  |  |  |  |
|--------------------------|----------------------|----------------------------|-------------------|--|--|--|--|--|--|
|                          |                      |                            |                   |  |  |  |  |  |  |
| General Information      |                      | Site Information           |                   |  |  |  |  |  |  |
| Analyst                  | AJB                  | Intersection               | Windsor/Campbell  |  |  |  |  |  |  |
| Agency/Co.               | Eriksson Engineering | Jurisdiction               | Arlington Heights |  |  |  |  |  |  |
| Date Performed           | 01/31/2017           | East/West Street           | Campbell Street   |  |  |  |  |  |  |
| Analysis Year            | 2016                 | North/South Street         | Windsor Drive     |  |  |  |  |  |  |
| Time Analyzed            | 3:00 - 4:00 PM       | Peak Hour Factor           | 0.42              |  |  |  |  |  |  |
| Intersection Orientation | North-South          | Analysis Time Period (hrs) | 0.25              |  |  |  |  |  |  |
| Project Description      | Proposed Conditions  |                            |                   |  |  |  |  |  |  |



| Vehicle Volumes and Ad                  | justmo | ents    |       |      |       |      |       |      |    |       |       |    |    |       |       |   |
|-----------------------------------------|--------|---------|-------|------|-------|------|-------|------|----|-------|-------|----|----|-------|-------|---|
| Approach                                |        | Eastb   | ound  |      |       | West | bound |      |    | North | bound |    |    | South | bound |   |
| Movement                                | U      | L       | Т     | R    | U     | L    | Т     | R    | U  | L     | Т     | R  | U  | L     | Т     | R |
| Priority                                |        | 10      | 11    | 12   |       | 7    | 8     | 9    | 10 | 1     | 2     | 3  | 4U | 4     | 5     | 6 |
| Number of Lanes                         |        | 0       | 0     | 0    |       | 0    | 0     | 0    | 0  | 0     | 1     | 0  | 0  | 0     | 1     | 0 |
| Configuration                           |        |         |       |      |       |      | LR    |      |    |       |       | TR |    | LT    |       |   |
| Volume, V (veh/h)                       |        |         |       |      |       | 10   |       | 3    |    |       | 0     | 14 |    | 36    | 58    |   |
| Percent Heavy Vehicles (%)              |        |         |       |      |       | 3    |       | 3    |    |       |       |    |    | 3     |       |   |
| Proportion Time Blocked                 |        |         |       |      |       |      |       |      |    |       |       |    |    |       |       |   |
| Percent Grade (%)                       |        |         |       |      |       |      | 0     |      |    |       |       |    |    |       |       |   |
| Right Turn Channelized                  |        | Ν       | 10    |      |       | Ν    | 10    |      |    | Ν     | lo    |    |    | Ν     | 10    |   |
| Median Type/Storage                     |        |         |       | Undi | vided |      |       |      |    |       |       |    |    |       |       |   |
| Critical and Follow-up H                | eadwa  | ays     |       |      |       |      |       |      |    |       |       |    |    |       |       |   |
| Base Critical Headway (sec)             |        |         |       |      |       | 7.1  |       | 6.2  |    |       |       |    |    | 4.1   |       |   |
| Critical Headway (sec)                  |        |         |       |      |       | 7.13 |       | 6.23 |    |       |       |    |    | 4.13  |       |   |
| Base Follow-Up Headway (sec)            |        |         |       |      |       | 3.5  |       | 3.3  |    |       |       |    |    | 2.2   |       |   |
| Follow-Up Headway (sec)                 |        |         |       |      |       | 3.53 |       | 3.33 |    |       |       |    |    | 2.23  |       |   |
| Delay, Queue Length, an                 | d Leve | el of S | ervic | e    |       |      |       |      |    |       |       |    |    |       |       |   |
| Flow Rate, v (veh/h)                    |        |         |       |      |       |      | 31    |      |    |       |       |    |    | 86    |       |   |
| Capacity, c (veh/h)                     |        |         |       |      |       |      | 651   |      |    |       |       |    |    | 1551  |       |   |
| v/c Ratio                               |        |         |       |      |       |      | 0.05  |      |    |       |       |    |    | 0.06  |       |   |
| 95% Queue Length, Q <sub>95</sub> (veh) |        |         |       |      |       |      | 0.1   |      |    |       |       |    |    | 0.2   |       |   |
| Control Delay (s/veh)                   |        |         |       |      |       |      | 10.8  |      |    |       |       |    |    | 7.5   |       |   |
| Level of Service, LOS                   |        |         |       |      |       |      | В     |      |    |       |       |    |    | А     |       |   |
| Approach Delay (s/veh)                  |        |         |       |      |       | 10   | 0.8   |      |    |       |       |    |    | 3     | .1    |   |
| Approach LOS                            |        |         |       |      |       |      | В     |      |    |       |       |    |    |       |       |   |

Copyright  $\ensuremath{\mathbb{C}}$  2017 University of Florida. All Rights Reserved.

HCS7™ TWSC Version 7.1 Campbell South 300 Prop.xtw

| HCS7 Two-Way Stop-Control Report |                      |                            |                         |  |  |  |  |  |  |  |  |  |
|----------------------------------|----------------------|----------------------------|-------------------------|--|--|--|--|--|--|--|--|--|
| General Information              |                      | Site Information           |                         |  |  |  |  |  |  |  |  |  |
| Analyst                          | AJB                  | Intersection               | Miner/Inbound Drive     |  |  |  |  |  |  |  |  |  |
| Agency/Co.                       | Eriksson Engineering | Jurisdiction               | Arlington Heights       |  |  |  |  |  |  |  |  |  |
| Date Performed                   | 01/31/2017           | East/West Street           | Miner Road              |  |  |  |  |  |  |  |  |  |
| Analysis Year                    | 2016                 | North/South Street         | School Inbound Driveway |  |  |  |  |  |  |  |  |  |
| Time Analyzed                    | 8:15 - 9:15 AM       | Peak Hour Factor           | 0.75                    |  |  |  |  |  |  |  |  |  |
| Intersection Orientation         | East-West            | Analysis Time Period (hrs) | 0.25                    |  |  |  |  |  |  |  |  |  |
| Project Description              | Proposed Conditions  |                            |                         |  |  |  |  |  |  |  |  |  |



Major Street: East-West

| Vehicle Volumes and Adj                 | ustme  | ents    |        |      |       |      |       |   |   |       |       |   |   |       |       |    |
|-----------------------------------------|--------|---------|--------|------|-------|------|-------|---|---|-------|-------|---|---|-------|-------|----|
| Approach                                |        | Eastb   | ound   |      |       | West | bound |   |   | North | bound |   |   | South | bound |    |
| Movement                                | U      | L       | Т      | R    | U     | L    | Т     | R | U | L     | Т     | R | U | L     | Т     | R  |
| Priority                                | 10     | 1       | 2      | 3    | 4U    | 4    | 5     | 6 |   | 7     | 8     | 9 |   | 10    | 11    | 12 |
| Number of Lanes                         | 0      | 0       | 1      | 0    | 0     | 0    | 1     | 0 |   | 0     | 0     | 0 |   | 0     | 0     | 0  |
| Configuration                           |        |         |        | TR   |       | LT   |       |   |   |       |       |   |   |       |       |    |
| Volume, V (veh/h)                       |        |         | 90     | 109  |       | 42   | 106   |   |   |       |       |   |   |       |       |    |
| Percent Heavy Vehicles (%)              |        |         |        |      |       | 3    |       |   |   |       |       |   |   |       |       |    |
| Proportion Time Blocked                 |        |         |        |      |       |      |       |   |   |       |       |   |   |       |       |    |
| Percent Grade (%)                       |        |         |        |      |       |      |       |   |   |       |       |   |   |       |       |    |
| Right Turn Channelized                  |        | Ν       | lo     |      |       | Ν    | 10    |   |   | Ν     | 10    |   |   | Ν     | 10    |    |
| Median Type/Storage                     |        |         |        | Undi | vided |      |       |   |   |       |       |   |   |       |       |    |
| Critical and Follow-up Ho               | eadwa  | iys     |        |      |       |      |       |   |   |       |       |   |   |       |       |    |
| Base Critical Headway (sec)             |        |         |        |      |       | 4.1  |       |   |   |       |       |   |   |       |       |    |
| Critical Headway (sec)                  |        |         |        |      |       | 4.13 |       |   |   |       |       |   |   |       |       |    |
| Base Follow-Up Headway (sec)            |        |         |        |      |       | 2.2  |       |   |   |       |       |   |   |       |       |    |
| Follow-Up Headway (sec)                 |        |         |        |      |       | 2.23 |       |   |   |       |       |   |   |       |       |    |
| Delay, Queue Length, and                | d Leve | el of S | ervice | e    |       |      |       |   |   |       |       |   |   |       |       |    |
| Flow Rate, v (veh/h)                    |        |         |        |      |       | 56   |       |   |   |       |       |   |   |       |       |    |
| Capacity, c (veh/h)                     |        |         |        |      |       | 1237 |       |   |   |       |       |   |   |       |       |    |
| v/c Ratio                               |        |         |        |      |       | 0.05 |       |   |   |       |       |   |   |       |       |    |
| 95% Queue Length, Q <sub>95</sub> (veh) |        |         |        |      |       | 0.1  |       |   |   |       |       |   |   |       |       |    |
| Control Delay (s/veh)                   |        |         |        |      |       | 8.0  |       |   |   |       |       |   |   |       |       |    |
| Level of Service, LOS                   |        |         |        |      |       | A    |       |   |   |       |       |   |   |       |       |    |
| Approach Delay (s/veh)                  |        |         |        |      |       | 2    | 6     |   |   |       |       |   |   |       |       |    |
| Approach LOS                            |        |         |        |      |       |      |       |   |   |       |       |   |   |       |       |    |

Copyright © 2017 University of Florida. All Rights Reserved.

|                          | HCS7 Two-Way Sto     | p-Control Report           |                         |
|--------------------------|----------------------|----------------------------|-------------------------|
| General Information      |                      | Site Information           |                         |
| Analyst                  | AJB                  | Intersection               | Miner/Inbound Drive     |
| Agency/Co.               | Eriksson Engineering | Jurisdiction               | Arlington Heights       |
| Date Performed           | 01/31/2017           | East/West Street           | Miner Road              |
| Analysis Year            | 2016                 | North/South Street         | School Inbound Driveway |
| Time Analyzed            | 3:00 - 4:00 PM       | Peak Hour Factor           | 0.69                    |
| Intersection Orientation | East-West            | Analysis Time Period (hrs) | 0.25                    |
| Project Description      | Proposed Conditions  |                            |                         |
|                          |                      |                            |                         |



Major Street: East-West

| Vehicle Volumes and Ad                  | justmo | ents    |       |      |       |      |       |   |   |       |       |   |   |       |       |    |
|-----------------------------------------|--------|---------|-------|------|-------|------|-------|---|---|-------|-------|---|---|-------|-------|----|
| Approach                                |        | Eastb   | ound  |      |       | West | bound |   |   | North | bound |   |   | South | bound |    |
| Movement                                | U      | L       | Т     | R    | U     | L    | Т     | R | U | L     | Т     | R | U | L     | Т     | R  |
| Priority                                | 1U     | 1       | 2     | 3    | 4U    | 4    | 5     | 6 |   | 7     | 8     | 9 |   | 10    | 11    | 12 |
| Number of Lanes                         | 0      | 0       | 1     | 0    | 0     | 0    | 1     | 0 |   | 0     | 0     | 0 |   | 0     | 0     | 0  |
| Configuration                           |        |         |       | TR   |       | LT   |       |   |   |       |       |   |   |       |       |    |
| Volume, V (veh/h)                       |        |         | 98    | 59   |       | 30   | 111   |   |   |       |       |   |   |       |       |    |
| Percent Heavy Vehicles (%)              |        |         |       |      |       | 3    |       |   |   |       |       |   |   |       |       |    |
| Proportion Time Blocked                 |        |         |       |      |       |      |       |   |   |       |       |   |   |       |       |    |
| Percent Grade (%)                       |        |         |       |      |       |      |       |   |   |       |       |   |   |       |       |    |
| Right Turn Channelized                  |        | Ν       | lo    |      |       | Ν    | lo    |   |   | ١     | 10    |   |   | Ν     | lo    |    |
| Median Type/Storage                     |        |         |       | Undi | vided |      |       |   |   |       |       |   |   |       |       |    |
| Critical and Follow-up H                | eadwa  | ays     |       |      |       |      |       |   |   |       |       |   |   |       |       |    |
| Base Critical Headway (sec)             |        |         |       |      |       | 4.1  |       |   |   |       |       |   |   |       |       |    |
| Critical Headway (sec)                  |        |         |       |      |       | 4.13 |       |   |   |       |       |   |   |       |       |    |
| Base Follow-Up Headway (sec)            |        |         |       |      |       | 2.2  |       |   |   |       |       |   |   |       |       |    |
| Follow-Up Headway (sec)                 |        |         |       |      |       | 2.23 |       |   |   |       |       |   |   |       |       |    |
| Delay, Queue Length, an                 | d Leve | el of S | ervic | e    |       |      |       |   |   |       |       |   |   |       |       |    |
| Flow Rate, v (veh/h)                    |        |         |       |      |       | 43   |       |   |   |       |       |   |   |       |       |    |
| Capacity, c (veh/h)                     |        |         |       |      |       | 1239 |       |   |   |       |       |   |   |       |       |    |
| v/c Ratio                               |        |         |       |      |       | 0.03 |       |   |   |       |       |   |   |       |       |    |
| 95% Queue Length, Q <sub>95</sub> (veh) |        |         |       |      |       | 0.1  |       |   |   |       |       |   |   |       |       |    |
| Control Delay (s/veh)                   |        |         |       |      |       | 8.0  |       |   |   |       |       |   |   |       |       |    |
| Level of Service, LOS                   |        |         |       |      |       | A    |       |   |   |       |       |   |   |       |       |    |
| Approach Delay (s/veh)                  |        |         |       |      |       | 1    | .9    |   |   |       |       |   |   |       |       |    |
| Approach LOS                            |        |         |       |      |       |      |       |   |   |       |       |   |   |       |       |    |

Copyright © 2017 University of Florida. All Rights Reserved.

| HCS7 Two-Way Stop-Control Report |                      |                            |                    |  |  |  |  |  |  |  |  |  |
|----------------------------------|----------------------|----------------------------|--------------------|--|--|--|--|--|--|--|--|--|
| General Information              |                      | Site Information           |                    |  |  |  |  |  |  |  |  |  |
| Analyst                          | AJB                  | Intersection               | Kensington/Windsor |  |  |  |  |  |  |  |  |  |
| Agency/Co.                       | Eriksson Engineering | Jurisdiction               | Arlington Heights  |  |  |  |  |  |  |  |  |  |
| Date Performed                   | 01/31/2017           | East/West Street           | Kensington Road    |  |  |  |  |  |  |  |  |  |
| Analysis Year                    | 2016                 | North/South Street         | Windsor Drive      |  |  |  |  |  |  |  |  |  |
| Time Analyzed                    | 8:15 - 9:15 AM       | Peak Hour Factor           | 0.72               |  |  |  |  |  |  |  |  |  |
| Intersection Orientation         | East-West            | Analysis Time Period (hrs) | 0.25               |  |  |  |  |  |  |  |  |  |
| Project Description              | Proposed Conditions  |                            |                    |  |  |  |  |  |  |  |  |  |



Major Street: East-West

| Vehicle Volumes and Adj                 | ustme  | ents    |        |      |       |      |       |    |   |       |       |      |    |       |       |      |
|-----------------------------------------|--------|---------|--------|------|-------|------|-------|----|---|-------|-------|------|----|-------|-------|------|
| Approach                                |        | Eastb   | ound   |      |       | West | bound |    |   | North | bound |      |    | South | bound |      |
| Movement                                | U      | L       | Т      | R    | U     | L    | Т     | R  | U | L     | Т     | R    | U  | L     | Т     | R    |
| Priority                                | 1U     | 1       | 2      | 3    | 4U    | 4    | 5     | 6  |   | 7     | 8     | 9    |    | 10    | 11    | 12   |
| Number of Lanes                         | 0      | 1       | 1      | 0    | 0     | 1    | 1     | 0  |   | 0     | 1     | 0    |    | 0     | 1     | 0    |
| Configuration                           |        | L       |        | TR   |       | L    |       | TR |   |       | LTR   |      |    |       | LTR   |      |
| Volume, V (veh/h)                       |        | 3       | 207    | 7    |       | 11   | 231   | 5  |   | 9     | 5     | 19   |    | 36    | 36    | 47   |
| Percent Heavy Vehicles (%)              |        | 3       |        |      |       | 3    |       |    |   | 3     | 3     | 3    |    | 3     | 3     | 3    |
| Proportion Time Blocked                 |        |         |        |      |       |      |       |    |   |       |       |      |    |       |       |      |
| Percent Grade (%)                       |        |         |        |      |       |      |       |    |   |       | 0     |      |    | (     | )     |      |
| Right Turn Channelized                  |        | Ν       | lo     |      |       | Ν    | lo    |    |   | Ν     | lo    |      | No |       |       |      |
| Median Type/Storage                     |        |         |        | Undi | vided |      |       |    |   |       |       |      |    |       |       |      |
| Critical and Follow-up He               | eadwa  | ays     |        |      |       |      |       |    |   |       |       |      |    |       |       |      |
| Base Critical Headway (sec)             |        | 4.1     |        |      |       | 4.1  |       |    |   | 7.1   | 6.5   | 6.2  |    | 7.1   | 6.5   | 6.2  |
| Critical Headway (sec)                  |        | 4.13    |        |      |       | 4.13 |       |    |   | 7.13  | 6.53  | 6.23 |    | 7.13  | 6.53  | 6.23 |
| Base Follow-Up Headway (sec)            |        | 2.2     |        |      |       | 2.2  |       |    |   | 3.5   | 4.0   | 3.3  |    | 3.5   | 4.0   | 3.3  |
| Follow-Up Headway (sec)                 |        | 2.23    |        |      |       | 2.23 |       |    |   | 3.53  | 4.03  | 3.33 |    | 3.53  | 4.03  | 3.33 |
| Delay, Queue Length, and                | d Leve | el of S | ervice | 9    |       |      |       |    |   |       |       |      |    |       |       |      |
| Flow Rate, v (veh/h)                    |        | 4       |        |      |       | 15   |       |    |   |       | 45    |      |    |       | 165   |      |
| Capacity, c (veh/h)                     |        | 1201    |        |      |       | 1180 |       |    |   |       | 400   |      |    |       | 406   |      |
| v/c Ratio                               |        | 0.00    |        |      |       | 0.01 |       |    |   |       | 0.11  |      |    |       | 0.41  |      |
| 95% Queue Length, Q <sub>95</sub> (veh) |        | 0.0     |        |      |       | 0.0  |       |    |   |       | 0.4   |      |    |       | 1.9   |      |
| Control Delay (s/veh)                   |        | 8.0     |        |      |       | 8.1  |       |    |   |       | 15.1  |      |    |       | 19.8  |      |
| Level of Service, LOS                   |        | A       |        |      |       | А    |       |    |   |       | С     |      |    |       | С     |      |
| Approach Delay (s/veh)                  |        | 0       | .1     |      |       | 0    | .4    |    |   | 15    | 5.1   | -    |    | 19    | 9.8   |      |
| Approach LOS                            |        |         |        |      |       |      |       |    |   |       | c     |      |    | (     | 2     |      |

Copyright © 2017 University of Florida. All Rights Reserved.

HCS7™ TWSC Version 7.1 Kensington 815 Prop.xtw

| HCS7 Two-Way Stop-Control Report |                      |                            |                    |  |  |  |  |  |  |  |  |  |
|----------------------------------|----------------------|----------------------------|--------------------|--|--|--|--|--|--|--|--|--|
| General Information              |                      | Site Information           |                    |  |  |  |  |  |  |  |  |  |
| Analyst                          | AJB                  | Intersection               | Kensington/Windsor |  |  |  |  |  |  |  |  |  |
| Agency/Co.                       | Eriksson Engineering | Jurisdiction               | Arlington Heights  |  |  |  |  |  |  |  |  |  |
| Date Performed                   | 01/31/2017           | East/West Street           | Kensington Road    |  |  |  |  |  |  |  |  |  |
| Analysis Year                    | 2016                 | North/South Street         | Windsor Drive      |  |  |  |  |  |  |  |  |  |
| Time Analyzed                    | 3:00 - 4:00 PM       | Peak Hour Factor           | 0.88               |  |  |  |  |  |  |  |  |  |
| Intersection Orientation         | East-West            | Analysis Time Period (hrs) | 0.25               |  |  |  |  |  |  |  |  |  |
| Project Description              | Proposed Conditions  |                            |                    |  |  |  |  |  |  |  |  |  |



Major Street: East-West

| venicle volumes and Adj                 | ustme   | ents    |        |      |       |      |       |      |   |       |       |      |   |       |       |      |  |
|-----------------------------------------|---------|---------|--------|------|-------|------|-------|------|---|-------|-------|------|---|-------|-------|------|--|
| Approach                                |         | Eastb   | ound   |      |       | West | bound |      |   | North | bound |      |   | South | bound |      |  |
| Movement                                | U       | L       | Т      | R    | U     | L    | Т     | R    | U | L     | Т     | R    | U | L     | Т     | R    |  |
| Priority                                | 1U      | 1       | 2      | 3    | 4U    | 4    | 5     | 6    |   | 7     | 8     | 9    |   | 10    | 11    | 12   |  |
| Number of Lanes                         | 0       | 1       | 1      | 0    | 0     | 1    | 1     | 0    |   | 0     | 1     | 0    |   | 0     | 1     | 0    |  |
| Configuration                           |         | L       |        | TR   |       | L    |       | TR   |   |       | LTR   |      |   |       | LTR   |      |  |
| Volume, V (veh/h)                       |         | 3       | 237    | 8    |       | 11   | 361   | 6    |   | 16    | 5     | 22   |   | 20    | 24    | 20   |  |
| Percent Heavy Vehicles (%)              |         | 3       |        |      |       | 3    |       |      |   | 3     | 3     | 3    |   | 3     | 3     | 3    |  |
| Proportion Time Blocked                 |         |         |        |      |       |      |       |      |   |       |       |      |   |       |       |      |  |
| Percent Grade (%)                       |         |         |        |      |       |      |       |      |   | (     | C     |      | 0 |       |       |      |  |
| Right Turn Channelized                  |         | Ν       | lo     |      |       | Ν    | lo    |      |   | Ν     | lo    |      |   | Ν     | lo    |      |  |
| Median Type/Storage                     |         |         |        | Undi | vided |      |       |      |   |       |       |      |   |       |       |      |  |
| Critical and Follow-up He               | eadwa   | iys     |        |      |       |      |       |      |   |       |       |      |   |       |       |      |  |
| Base Critical Headway (sec)             |         | 4.1     |        |      |       | 4.1  |       |      |   | 7.1   | 6.5   | 6.2  |   | 7.1   | 6.5   | 6.2  |  |
| Critical Headway (sec)                  |         | 4.13    |        |      |       | 4.13 |       |      |   | 7.13  | 6.53  | 6.23 |   | 7.13  | 6.53  | 6.23 |  |
| Base Follow-Up Headway (sec)            |         | 2.2     |        |      |       | 2.2  |       |      |   | 3.5   | 4.0   | 3.3  |   | 3.5   | 4.0   | 3.3  |  |
| Follow-Up Headway (sec)                 |         | 2.23    |        |      |       | 2.23 |       |      |   | 3.53  | 4.03  | 3.33 |   | 3.53  | 4.03  | 3.33 |  |
| Delay, Queue Length, and                | d Leve  | el of S | ervice | 9    |       |      |       |      |   |       |       |      |   |       |       |      |  |
| Flow Rate, v (veh/h)                    |         | 3       |        |      |       | 12   |       |      |   |       | 49    |      |   |       | 73    |      |  |
| Capacity, c (veh/h)                     |         | 1110    |        |      |       | 1199 |       |      |   |       | 381   |      |   |       | 356   |      |  |
| v/c Ratio                               |         | 0.00    |        |      |       | 0.01 |       |      |   |       | 0.13  |      |   |       | 0.21  |      |  |
| 95% Queue Length, Q <sub>95</sub> (veh) |         | 0.0     |        |      |       | 0.0  |       |      |   |       | 0.4   |      |   |       | 0.8   |      |  |
| Control Delay (s/veh)                   |         | 8.3     |        |      |       | 8.0  |       |      |   |       | 15.8  |      |   |       | 17.7  |      |  |
| Level of Service, LOS                   |         | A       |        |      | A     |      |       | С    |   |       |       |      |   | С     |       |      |  |
| Approach Delay (s/veh)                  | 0.1 0.2 |         |        |      |       |      |       | 15.8 |   |       |       | 17.7 |   |       |       |      |  |
| Approach LOS                            |         |         |        |      |       |      |       |      | C |       |       |      | С |       |       |      |  |

Copyright  $\ensuremath{\mathbb{C}}$  2017 University of Florida. All Rights Reserved.

HCS7™ TWSC Version 7.1

Kensington 300 Prop.xtw

Г

|                                  |             | ALL-WA         | 1 310P C  | UNTROL        | ANALISI         | 0      |               |        |  |  |  |
|----------------------------------|-------------|----------------|-----------|---------------|-----------------|--------|---------------|--------|--|--|--|
| General Information              |             |                |           | Site Inforr   | mation          |        |               |        |  |  |  |
| Analyst                          | AJB         |                |           | Intersection  |                 | Minen  | liner/Windsor |        |  |  |  |
| Agency/Co.                       | Eriksso     | on Engineering | 1         | Jurisdiction  | r               | Arling | ton Heights   |        |  |  |  |
| Date Performed                   | 01/31/2     | 2017           |           |               |                 | 2010   |               |        |  |  |  |
|                                  | 0.75-3      | 9. I J AIVI    |           |               |                 |        |               |        |  |  |  |
| Foject ID Proposed Condition     |             |                |           | North/South S | Stroot: Windoor | Drivo  |               |        |  |  |  |
|                                  |             |                |           | North/South S | street. Windson | Diive  |               |        |  |  |  |
| volume Adjustments               | and Site Cr | Iaracterist    | asthound  |               |                 | We     | esthound      |        |  |  |  |
| lovement                         | L           |                | T         | R             | L               |        | Т             | R      |  |  |  |
| 'olume (veh/h)                   | 21          |                | 57        | 48            | 77              |        | 59            | 4      |  |  |  |
| Thrus Left Lane                  |             |                |           |               |                 |        |               |        |  |  |  |
| pproach                          |             | N              | orthbound |               |                 | Sou    | uthbound      |        |  |  |  |
| lovement                         | L           |                | Т         | R             | L               |        | T             | R      |  |  |  |
| 'olume (veh/h)                   | - 0         |                | 0         | 0             | 1               |        | 27            | 17     |  |  |  |
| Thrus Left Lane                  |             |                |           |               |                 |        |               |        |  |  |  |
|                                  | East        | bound          | Wes       | tbound        | North           | bound  | Sout          | hbound |  |  |  |
|                                  | L1          | L2             | L1        | L2            | L1              | L2     | L1            | L2     |  |  |  |
| onfiguration                     | LTR         | 1              | LTR       |               | LTR             |        | LTR           | 1      |  |  |  |
| чНF                              | 0.61        |                | 0.61      |               | 0.61            |        | 0.61          | 1      |  |  |  |
| low Rate (veh/h)                 | 205         |                | 228       |               | 0               |        | 72            |        |  |  |  |
| 6 Heavy Vehicles                 | 0           |                | 0         |               | 0               |        | 0             |        |  |  |  |
| lo. Lanes                        |             | 1              |           | 1             | 1               | 1      |               | 1      |  |  |  |
| eometry Group                    |             | 1              |           | 1             | 1               | 1      |               | 1      |  |  |  |
| Juration, T                      |             |                |           | 0.            | .25             |        |               |        |  |  |  |
| Saturation Headway               | Adjustment  | Workshee       | et        |               |                 |        |               |        |  |  |  |
| Prop. Left-Turns                 | 0.2         |                | 0.6       |               | 0.0             |        | 0.0           |        |  |  |  |
| rop. Right-Turns                 | 0.4         |                | 0.0       |               | 0.0             |        | 04            |        |  |  |  |
| Prop. Heavy Vehicle              | 0.0         |                | 0.0       |               | 0.0             |        | 0.0           |        |  |  |  |
| I T-adi                          | 0.0         | 0.2            | 0.0       | 0.2           | 0.0             | 0.2    | 0.0           | 0.2    |  |  |  |
| RT-adi                           | -0.6        | -0.6           | -0.6      | -0.6          | -0.6            | -0.6   | -0.6          | -0.6   |  |  |  |
| W/ adj                           | -0.0        | -0.0           | -0.0      | -0.0          | -0.0            | -0.0   | -0.0          | -0.0   |  |  |  |
|                                  | 1.7         | 1.7            | 0.1       | 1.7           | 1.7             | 1.7    | 1.7           | 1.7    |  |  |  |
|                                  | -0.2        | <u> </u>       | 0.1       |               | 0.0             |        | -0.2          |        |  |  |  |
| Departure Headway a              | and Service |                |           |               |                 | 1      |               |        |  |  |  |
| d, initial value (s)             | 3.20        |                | 3.20      |               | 3.20            |        | 3.20          |        |  |  |  |
| , initial                        | 0.18        |                | 0.20      |               | 0.00            | ļ      | 0.06          |        |  |  |  |
| d, final value (s)               | 4.12        |                | 4.38      |               | 4.95            |        | 4.62          |        |  |  |  |
| , final value                    | 0.235       |                | 0.277     |               | 0.000           |        | 0.092         |        |  |  |  |
| love-up time, m (s)              | 2.          |                | 2         | .0            | 2.              |        | 4             | 2.0    |  |  |  |
| service Time, t <sub>s</sub> (s) | 2.1         |                | 2.4       |               | 3.0             |        | 2.6           |        |  |  |  |
| Capacity and Level o             | f Service   |                |           |               |                 |        |               |        |  |  |  |
|                                  | East        | bound          | Wes       | tbound        | North           | bound  | Sout          | hbound |  |  |  |
|                                  | L1          | L2             | L1        | L2            | L1              | L2     | L1            | L2     |  |  |  |
| apacity (veh/h)                  | 891         |                | 814       |               |                 |        | 800           | 1      |  |  |  |
| elay (s/veh)                     | 84          |                | 00        |               | 80              |        | 81            |        |  |  |  |
|                                  | Δ.+         |                | 9.0<br>A  |               | 0.0<br>A        |        | A             |        |  |  |  |
|                                  |             |                |           |               |                 |        |               |        |  |  |  |
| .pproach: Delay (s/veh)          | -           | 8.4            | 9         | .0            | 8.              | U      | 6             | 5.1    |  |  |  |
| LOS                              |             | Α              | /         | 4             | A               | 1      | ·             | A      |  |  |  |
| ntersection Delay (s/veh)        | 1           |                |           | 8             | 3.6             |        |               |        |  |  |  |
| ntersection LOS                  |             |                |           | Α             |                 |        |               |        |  |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | ALL-WA        | Y STOP C   | ONTROL        | ANALYSI         | S          |               |         |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|------------|---------------|-----------------|------------|---------------|---------|--|--|--|
| General Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |               |            | Site Infor    | mation          |            |               |         |  |  |  |
| Analyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AJB        |               |            | Intersection  |                 | Miner      | Miner/Windsor |         |  |  |  |
| Agency/Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Erikss     | on Engineerin | g          | Jurisdiction  |                 | Arling     | ton Heights   |         |  |  |  |
| Date Performed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 01/31/     | 2017          |            | Analysis Yea  | Г               | 2016       |               |         |  |  |  |
| Analysis Time Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3:00 -     | 4:00 PM       |            | _ <u> </u>    |                 |            |               |         |  |  |  |
| Project ID Proposed Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | าร         |               |            |               | Directo 144     | Defer      |               |         |  |  |  |
| East/West Street: Miner Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | et         |               |            | North/South S | Street: Windsor | Drive      |               |         |  |  |  |
| Volume Adjustments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and Site C | haracteris    | tics       |               |                 | 10/-       |               |         |  |  |  |
| Approach<br>Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |               | T          | R             | _               | V          |               | R       |  |  |  |
| Volume (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21         | 1             | 58         | 34            | 29              |            | 48            | 3       |  |  |  |
| %Thrus Left Lane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |            | -             |                 |            | _             | -       |  |  |  |
| Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |               | Northbound |               |                 | Sou        | uthbound      |         |  |  |  |
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L          |               | Т          | R             | L               |            | Т             | R       |  |  |  |
| Volume (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20         | )             | 30         | 7             | 9               |            | 23            | 18      |  |  |  |
| %Thrus Left Lane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |            |               |                 |            |               |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | East       | tbound        | Wes        | stbound       | North           | bound      | Sou           | thbound |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L1         | L2            | L1         | L2            | L1              | L2         | L1            | L2      |  |  |  |
| Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ITR        | +             | I TR       |               | ITR             | <u> </u>   | ITR           |         |  |  |  |
| PHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.82       | 1             | 0.82       |               | 0.82            |            | 0.82          | 1       |  |  |  |
| Flow Rate (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 136        |               | 96         |               | 68              |            | 59            | 1       |  |  |  |
| % Heavy Vehicles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0          |               | 0          |               | 0               |            | 0             |         |  |  |  |
| No. Lanes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 1             |            | 1             |                 | 1          |               | 1       |  |  |  |
| Geometry Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 1             |            | 1             |                 | 1          |               | 1       |  |  |  |
| Duration, T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | -             |            | 0             | .25             | -          |               | -       |  |  |  |
| Saturation Headway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Adjustment | Workshe       | et         |               |                 |            |               |         |  |  |  |
| Prop. Left-Turns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2        |               | 0.4        |               | 0.4             |            | 0.2           |         |  |  |  |
| Prop. Right-Turns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.3        |               | 0.0        |               | 0.1             |            | 0.4           |         |  |  |  |
| Prop. Heavy Vehicle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0        |               | 0.0        |               | 0.0             |            | 0.0           |         |  |  |  |
| hLT-adi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2        | 0.2           | 0.2        | 0.2           | 0.2             | 0.2        | 0.2           | 0.2     |  |  |  |
| hRT-adi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.6       | -0.6          | -0.6       | -0.6          | -0.6            | -0.6       | -0.6          | -0.6    |  |  |  |
| hHV-adi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17         | 17            | 17         | 17            | 17              | 17         | 17            | 17      |  |  |  |
| hadi computed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.1       | 1.1           | 0.1        | ,.,           | -0.0            | 1.1        | -0.2          | ,.,     |  |  |  |
| Doporturo Hoodway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | Timo          | 0.7        |               | 0.0             |            | 0.2           |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |               | 2.00       |               | 2.00            | 1          | 2.00          |         |  |  |  |
| nd, initial value (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.20       |               | 3.20       |               | 3.20            |            | 3.20          |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.12       |               | 1 20       |               | 0.00            |            | 4.20          |         |  |  |  |
| ria, iiiiai value (δ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 157      |               | 0 117      |               | 0.085           |            | 4.32          | +       |  |  |  |
| Move-un time m (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.107      | 0             | 0.111      | <u> </u>      | 0.000           | 0          | 0.077         | 20      |  |  |  |
| $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$ | 2          |               | 2          |               | 2.              | 1          |               |         |  |  |  |
| Service Time, t <sub>s</sub> (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>   |               | 2.4        |               | 2.5             |            | 2.3           |         |  |  |  |
| Capacity and Level o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t Service  |               |            |               |                 |            |               |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | East       | tbound        | Wes        | tbound        | North           | bound      | Sou           | thbound |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L1         | L2            | L1         | L2            | L1              | L2         | L1            | L2      |  |  |  |
| Capacity (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 850        |               | 800        |               | 850             |            | 843           |         |  |  |  |
| Delay (s/veh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.9        | 1             | 8.0        |               | 7.9             |            | 7.6           |         |  |  |  |
| LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A          |               | A          |               | A               |            | A             |         |  |  |  |
| Approach: Delay (s/yeb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 70            |            | 20            | 7               | 9          | + <u> </u>    | 7.6     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 1.3           |            | Λ             |                 | 7.0<br>A A |               |         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | А             |            | <u>н</u>      | 7.0             | 1          |               | А       |  |  |  |
| Intersection Delay (s/veh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |               |            |               | <u>л.9</u><br>Л |            |               |         |  |  |  |
| Intersection LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          |               |            | A             |                 |            |               |         |  |  |  |

Copyright © 2010 University of Florida, All Rights Reserved

HCS+<sup>TM</sup> Version 5.6

Generated: 1/31/2017 2:47 PM

|                          | HCS7 Two-Way Stop    | o-Control Report           |                          |
|--------------------------|----------------------|----------------------------|--------------------------|
| General Information      |                      | Site Information           |                          |
| Analyst                  | AJB                  | Intersection               | Miner/Outbound Drive     |
| Agency/Co.               | Eriksson Engineering | Jurisdiction               | Arlington Heights        |
| Date Performed           | 01/31/2017           | East/West Street           | Miner Road               |
| Analysis Year            | 2016                 | North/South Street         | School Outbound Driveway |
| Time Analyzed            | 8:15 - 9:15 AM       | Peak Hour Factor           | 0.75                     |
| Intersection Orientation | East-West            | Analysis Time Period (hrs) | 0.25                     |
| Project Description      | Proposed Conditions  |                            |                          |



### Major Street: East-West

| Vehicle Volumes and Adj                 | ustme  | ents      |        |   |    |      |       |      |    |       |       |      |   |       |       |    |  |
|-----------------------------------------|--------|-----------|--------|---|----|------|-------|------|----|-------|-------|------|---|-------|-------|----|--|
| Approach                                |        | Eastb     | ound   |   |    | West | bound |      |    | North | bound |      |   | South | bound |    |  |
| Movement                                | U      | L         | Т      | R | U  | L    | Т     | R    | U  | L     | Т     | R    | U | L     | Т     | R  |  |
| Priority                                | 1U     | 1         | 2      | 3 | 4U | 4    | 5     | 6    |    | 7     | 8     | 9    |   | 10    | 11    | 12 |  |
| Number of Lanes                         | 0      | 0         | 1      | 0 | 0  | 0    | 1     | 0    |    | 1     | 0     | 1    |   | 0     | 0     | 0  |  |
| Configuration                           |        |           | Т      |   |    |      | Т     |      |    | L     |       | R    |   |       |       |    |  |
| Volume, V (veh/h)                       |        |           | 90     |   |    |      | 76    |      |    | 72    |       | 36   |   |       |       |    |  |
| Percent Heavy Vehicles (%)              |        |           |        |   |    |      |       |      |    | 3     |       | 3    |   |       |       |    |  |
| Proportion Time Blocked                 |        |           |        |   |    |      |       |      |    |       |       |      |   |       |       |    |  |
| Percent Grade (%)                       |        |           |        |   |    |      |       |      |    | (     | 0     |      |   |       |       |    |  |
| Right Turn Channelized                  |        | Ν         | lo     |   |    | Ν    | lo    |      |    | Ν     | lo    |      |   | Ν     | lo    |    |  |
| Median Type/Storage                     |        | Undivided |        |   |    |      |       |      |    |       |       |      |   |       |       |    |  |
| Critical and Follow-up He               | eadwa  | iys       |        |   |    |      |       |      |    |       |       |      |   |       |       |    |  |
| Base Critical Headway (sec)             |        |           |        |   |    |      |       |      |    | 7.1   |       | 6.2  |   |       |       |    |  |
| Critical Headway (sec)                  |        |           |        |   |    |      |       |      |    | 7.13  |       | 6.23 |   |       |       |    |  |
| Base Follow-Up Headway (sec)            |        |           |        |   |    |      |       |      |    | 3.5   |       | 3.3  |   |       |       |    |  |
| Follow-Up Headway (sec)                 |        |           |        |   |    |      |       |      |    | 3.53  |       | 3.33 |   |       |       |    |  |
| Delay, Queue Length, and                | d Leve | el of S   | ervice | e |    |      |       |      |    |       |       |      |   |       |       |    |  |
| Flow Rate, v (veh/h)                    |        |           |        |   |    |      |       |      |    | 96    |       | 48   |   |       |       |    |  |
| Capacity, c (veh/h)                     |        |           |        |   |    |      |       |      |    | 695   |       | 884  |   |       |       |    |  |
| v/c Ratio                               |        |           |        |   |    |      |       |      |    | 0.14  |       | 0.05 |   |       |       |    |  |
| 95% Queue Length, Q <sub>95</sub> (veh) |        |           |        |   |    |      |       |      |    | 0.5   |       | 0.2  |   |       |       |    |  |
| Control Delay (s/veh)                   |        |           |        |   |    |      |       |      |    | 11.0  |       | 9.3  |   |       |       |    |  |
| Level of Service, LOS                   |        |           |        |   |    |      |       |      | BA |       |       | А    |   |       |       |    |  |
| Approach Delay (s/veh)                  |        |           |        |   |    |      |       | 10.4 |    |       |       |      |   |       |       |    |  |
| Approach LOS                            |        |           |        |   |    |      |       | В    |    |       |       |      |   |       |       |    |  |

Copyright  $\ensuremath{\mathbb{C}}$  2017 University of Florida. All Rights Reserved.

|                          | HCS7 Two-Way Stop    | p-Control Report           |                          |
|--------------------------|----------------------|----------------------------|--------------------------|
| General Information      |                      | Site Information           |                          |
| Analyst                  | AJB                  | Intersection               | Miner/Outbound Drive     |
| Agency/Co.               | Eriksson Engineering | Jurisdiction               | Arlington Heights        |
| Date Performed           | 01/31/2017           | East/West Street           | Miner Road               |
| Analysis Year            | 2016                 | North/South Street         | School Outbound Driveway |
| Time Analyzed            | 3:00 - 4:00 PM       | Peak Hour Factor           | 0.69                     |
| Intersection Orientation | East-West            | Analysis Time Period (hrs) | 0.25                     |
| Project Description      | Proposed Conditions  |                            |                          |
|                          |                      |                            |                          |



Major Street: East-West

| Vehicle Volumes and Ad                  | ljustmo | ents    |       |      |       |      |       |     |      |       |       |      |   |       |       |    |
|-----------------------------------------|---------|---------|-------|------|-------|------|-------|-----|------|-------|-------|------|---|-------|-------|----|
| Approach                                |         | Eastk   | ound  |      |       | West | bound |     |      | North | bound |      |   | South | bound |    |
| Movement                                | U       | L       | Т     | R    | U     | L    | Т     | R   | U    | L     | Т     | R    | U | L     | Т     | R  |
| Priority                                | 1U      | 1       | 2     | 3    | 4U    | 4    | 5     | 6   |      | 7     | 8     | 9    |   | 10    | 11    | 12 |
| Number of Lanes                         | 0       | 0       | 1     | 0    | 0     | 0    | 1     | 0   |      | 1     | 0     | 1    |   | 0     | 0     | 0  |
| Configuration                           |         |         | Т     |      |       |      | Т     |     |      | L     |       | R    |   |       |       |    |
| Volume, V (veh/h)                       |         |         | 89    |      |       |      | 66    |     |      | 75    |       | 24   |   |       |       |    |
| Percent Heavy Vehicles (%)              |         |         |       |      |       |      |       |     |      | 3     |       | 3    |   |       |       |    |
| Proportion Time Blocked                 |         |         |       |      |       |      |       |     |      |       |       |      |   |       |       |    |
| Percent Grade (%)                       |         |         |       |      |       |      |       |     |      |       | 0     |      |   |       |       |    |
| Right Turn Channelized                  |         | ١       | lo    |      |       | ١    | lo    |     |      | Ν     | lo    |      |   | Ν     | 10    |    |
| Median Type/Storage                     |         |         |       | Undi | vided |      |       |     |      |       |       |      |   |       |       |    |
| Critical and Follow-up H                | eadwa   | iys     |       |      |       |      |       |     |      |       |       |      |   |       |       |    |
| Base Critical Headway (sec)             |         |         |       |      |       |      |       |     |      | 7.1   |       | 6.2  |   |       |       |    |
| Critical Headway (sec)                  |         |         |       |      |       |      |       |     |      | 7.13  |       | 6.23 |   |       |       |    |
| Base Follow-Up Headway (sec)            |         |         |       |      |       |      |       |     |      | 3.5   |       | 3.3  |   |       |       |    |
| Follow-Up Headway (sec)                 |         |         |       |      |       |      |       |     |      | 3.53  |       | 3.33 |   |       |       |    |
| Delay, Queue Length, ar                 | nd Leve | el of S | ervic | e    |       |      |       |     |      |       |       |      |   |       |       |    |
| Flow Rate, v (veh/h)                    |         |         |       |      |       |      |       |     |      | 109   |       | 35   |   |       |       |    |
| Capacity, c (veh/h)                     |         |         |       |      |       |      |       |     |      | 655   |       | 835  |   |       |       |    |
| v/c Ratio                               |         |         |       |      |       |      |       |     |      | 0.17  |       | 0.04 |   |       |       |    |
| 95% Queue Length, Q <sub>95</sub> (veh) |         |         |       |      |       |      |       |     |      | 0.6   |       | 0.1  |   |       |       |    |
| Control Delay (s/veh)                   |         |         |       |      |       |      |       |     |      | 11.6  |       | 9.5  |   |       |       |    |
| Level of Service, LOS                   |         |         |       |      |       |      |       | B A |      |       | A     |      |   |       |       |    |
| Approach Delay (s/veh)                  |         |         |       |      |       |      |       |     | 11.1 |       |       |      |   |       |       |    |
| Approach LOS                            |         |         |       |      |       |      | В     |     |      |       |       |      |   |       |       |    |

| HCS7 Two-Way Stop-Control Report |                      |                            |                    |  |  |  |  |  |  |  |  |  |
|----------------------------------|----------------------|----------------------------|--------------------|--|--|--|--|--|--|--|--|--|
| General Information              |                      | Site Information           |                    |  |  |  |  |  |  |  |  |  |
| Analyst                          | AJB                  | Intersection               | Miner/Shared Drive |  |  |  |  |  |  |  |  |  |
| Agency/Co.                       | Eriksson Engineering | Jurisdiction               | Arlington Heights  |  |  |  |  |  |  |  |  |  |
| Date Performed                   | 01/31/2017           | East/West Street           | Miner Road         |  |  |  |  |  |  |  |  |  |
| Analysis Year                    | 2016                 | North/South Street         | Shared Driveway    |  |  |  |  |  |  |  |  |  |
| Time Analyzed                    | 8:15 - 9:15 AM       | Peak Hour Factor           | 0.79               |  |  |  |  |  |  |  |  |  |
| Intersection Orientation         | East-West            | Analysis Time Period (hrs) | 0.25               |  |  |  |  |  |  |  |  |  |
| Project Description              | Proposed Conditions  |                            |                    |  |  |  |  |  |  |  |  |  |



Major Street: East-West

| Vehicle Volumes and Ad                  | justmo  | ents    |         |      |       |      |       |   |      |       |       |      |   |       |       |    |
|-----------------------------------------|---------|---------|---------|------|-------|------|-------|---|------|-------|-------|------|---|-------|-------|----|
| Approach                                |         | Eastb   | ound    |      |       | West | bound |   |      | North | bound |      |   | South | bound |    |
| Movement                                | U       | L       | Т       | R    | U     | L    | Т     | R | U    | L     | Т     | R    | U | L     | Т     | R  |
| Priority                                | 1U      | 1       | 2       | 3    | 4U    | 4    | 5     | 6 |      | 7     | 8     | 9    |   | 10    | 11    | 12 |
| Number of Lanes                         | 0       | 0       | 1       | 0    | 0     | 0    | 1     | 0 |      | 0     | 0     | 0    |   | 0     | 0     | 0  |
| Configuration                           |         |         | Т       |      |       | LT   |       |   |      |       | LR    |      |   |       |       |    |
| Volume, V (veh/h)                       |         |         | 187     |      |       | 1    | 105   |   |      | 31    |       | 12   |   |       |       |    |
| Percent Heavy Vehicles (%)              |         |         |         |      |       | 3    |       |   |      | 3     |       | 3    |   |       |       |    |
| Proportion Time Blocked                 |         |         |         |      |       |      |       |   |      |       |       |      |   |       |       |    |
| Percent Grade (%)                       |         |         |         |      |       |      |       |   |      |       | 0     |      |   |       |       |    |
| Right Turn Channelized                  |         | Ν       | 10      |      |       | Ν    | 10    |   |      | Ν     | lo    |      |   | Ν     | lo    |    |
| Median Type/Storage                     |         |         |         | Undi | vided |      |       |   |      |       |       |      |   |       |       |    |
| Critical and Follow-up H                | eadwa   | iys     |         |      |       |      |       |   |      |       |       |      |   |       |       |    |
| Base Critical Headway (sec)             |         |         |         |      |       | 4.1  |       |   |      | 7.1   |       | 6.2  |   |       |       |    |
| Critical Headway (sec)                  |         |         |         |      |       | 4.13 |       |   |      | 7.13  |       | 6.23 |   |       |       |    |
| Base Follow-Up Headway (sec)            |         |         |         |      |       | 2.2  |       |   |      | 3.5   |       | 3.3  |   |       |       |    |
| Follow-Up Headway (sec)                 |         |         |         |      |       | 2.23 |       |   |      | 3.53  |       | 3.33 |   |       |       |    |
| Delay, Queue Length, ar                 | nd Leve | el of S | Service | e    |       |      |       |   |      |       |       |      |   |       |       |    |
| Flow Rate, v (veh/h)                    |         |         |         |      |       | 1    |       |   |      |       | 54    |      |   |       |       |    |
| Capacity, c (veh/h)                     |         |         |         |      |       | 1270 |       |   |      |       | 601   |      |   |       |       |    |
| v/c Ratio                               |         |         |         |      |       | 0.00 |       |   |      |       | 0.09  |      |   |       |       |    |
| 95% Queue Length, Q <sub>95</sub> (veh) |         |         |         |      |       | 0.0  |       |   |      |       | 0.3   |      |   |       |       |    |
| Control Delay (s/veh)                   |         |         |         |      |       | 7.8  |       |   |      |       | 11.6  |      |   |       |       |    |
| Level of Service, LOS                   |         |         |         |      | A     |      |       | В |      |       |       |      |   |       |       |    |
| Approach Delay (s/veh)                  |         | 0.1     |         |      |       |      |       |   | 11.6 |       |       |      |   |       |       |    |
| Approach LOS                            |         |         |         |      |       |      |       | В |      |       |       |      |   |       |       |    |

Copyright © 2017 University of Florida. All Rights Reserved.

| HCS7 Two-Way Stop-Control Report |                      |                            |                    |  |  |  |  |  |  |  |  |  |
|----------------------------------|----------------------|----------------------------|--------------------|--|--|--|--|--|--|--|--|--|
| General Information              |                      | Site Information           |                    |  |  |  |  |  |  |  |  |  |
| Analyst                          | AJB                  | Intersection               | Miner/Shared Drive |  |  |  |  |  |  |  |  |  |
| Agency/Co.                       | Eriksson Engineering | Jurisdiction               | Arlington Heights  |  |  |  |  |  |  |  |  |  |
| Date Performed                   | 01/31/2017           | East/West Street           | Miner Road         |  |  |  |  |  |  |  |  |  |
| Analysis Year                    | 2016                 | North/South Street         | Shared Driveway    |  |  |  |  |  |  |  |  |  |
| Time Analyzed                    | 3:00 - 4:00 PM       | Peak Hour Factor           | 0.61               |  |  |  |  |  |  |  |  |  |
| Intersection Orientation         | East-West            | Analysis Time Period (hrs) | 0.25               |  |  |  |  |  |  |  |  |  |
| Project Description              | Proposed Conditions  |                            |                    |  |  |  |  |  |  |  |  |  |



### Major Street: East-West

| Vehicle Volumes and Ad                  | justmo  | ents    |         |      |       |      |       |   |      |       |       |      |   |       |       |    |
|-----------------------------------------|---------|---------|---------|------|-------|------|-------|---|------|-------|-------|------|---|-------|-------|----|
| Approach                                |         | East    | oound   |      |       | West | bound |   |      | North | bound |      |   | South | bound |    |
| Movement                                | U       | L       | Т       | R    | U     | L    | Т     | R | U    | L     | Т     | R    | U | L     | Т     | R  |
| Priority                                | 1U      | 1       | 2       | 3    | 4U    | 4    | 5     | 6 |      | 7     | 8     | 9    |   | 10    | 11    | 12 |
| Number of Lanes                         | 0       | 0       | 1       | 0    | 0     | 0    | 1     | 0 |      | 0     | 0     | 0    |   | 0     | 0     | 0  |
| Configuration                           |         |         | Т       |      |       |      | Т     |   |      |       | LR    |      |   |       |       |    |
| Volume, V (veh/h)                       |         |         | 138     |      |       |      | 111   |   |      | 51    |       | 10   |   |       |       |    |
| Percent Heavy Vehicles (%)              |         |         |         |      |       |      |       |   |      | 3     |       | 3    |   |       |       |    |
| Proportion Time Blocked                 |         |         |         |      |       |      |       |   |      |       |       |      |   |       |       |    |
| Percent Grade (%)                       |         |         |         |      |       |      |       |   |      |       | C     |      |   |       |       |    |
| Right Turn Channelized                  |         | ١       | ١o      |      |       | ١    | ١o    |   |      | Ν     | lo    |      |   | Ν     | lo    |    |
| Median Type/Storage                     |         |         |         | Undi | vided |      |       |   |      |       |       |      |   |       |       |    |
| Critical and Follow-up H                | eadwa   | ays     |         |      |       |      |       |   |      |       |       |      |   |       |       |    |
| Base Critical Headway (sec)             |         |         |         |      |       |      |       |   |      | 7.1   |       | 6.2  |   |       |       |    |
| Critical Headway (sec)                  |         |         |         |      |       |      |       |   |      | 7.13  |       | 6.23 |   |       |       |    |
| Base Follow-Up Headway (sec)            |         |         |         |      |       |      |       |   |      | 3.5   |       | 3.3  |   |       |       |    |
| Follow-Up Headway (sec)                 |         |         |         |      |       |      |       |   |      | 3.53  |       | 3.33 |   |       |       |    |
| Delay, Queue Length, ar                 | nd Leve | el of S | Service | e    |       |      |       |   |      |       |       |      |   |       |       |    |
| Flow Rate, v (veh/h)                    |         |         |         |      |       |      |       |   |      |       | 100   |      |   |       |       |    |
| Capacity, c (veh/h)                     |         |         |         |      |       |      |       |   |      |       | 533   |      |   |       |       |    |
| v/c Ratio                               |         |         |         |      |       |      |       |   |      |       | 0.19  |      |   |       |       |    |
| 95% Queue Length, Q <sub>95</sub> (veh) |         |         |         |      |       |      |       |   |      |       | 0.7   |      |   |       |       |    |
| Control Delay (s/veh)                   |         |         |         |      |       |      |       |   |      |       | 13.3  |      |   |       |       |    |
| Level of Service, LOS                   |         |         |         |      |       |      |       | В |      |       |       |      |   |       |       |    |
| Approach Delay (s/veh)                  |         |         |         |      |       |      |       |   | 13.3 |       |       |      |   |       |       |    |
| Approach LOS                            |         |         |         |      |       |      |       | В |      |       |       |      |   |       |       |    |

|                          | HCS7 Two-Way Sto     | p-Control Report           |                   |
|--------------------------|----------------------|----------------------------|-------------------|
| General Information      |                      | Site Information           |                   |
| Analyst                  | AJB                  | Intersection               | Windsor/Campbell  |
| Agency/Co.               | Eriksson Engineering | Jurisdiction               | Arlington Heights |
| Date Performed           | 01/31/2017           | East/West Street           | Campbell Street   |
| Analysis Year            | 2016                 | North/South Street         | Windsor Drive     |
| Time Analyzed            | 8:15 - 9:15 AM       | Peak Hour Factor           | 0.47              |
| Intersection Orientation | North-South          | Analysis Time Period (hrs) | 0.25              |
| Project Description      | Proposed Conditions  |                            |                   |



### Vehicle Volumes and Adjustments

| · · · · · · · · · · · · · · · · · · ·   |        |         |        |      |       |      |       |   |    |       |       |   |            |   |     |    |  |
|-----------------------------------------|--------|---------|--------|------|-------|------|-------|---|----|-------|-------|---|------------|---|-----|----|--|
| Approach                                |        | Eastb   | ound   |      |       | West | bound |   |    | North | bound |   | Southbound |   |     |    |  |
| Movement                                | U      | L       | Т      | R    | U     | L    | Т     | R | U  | L     | Т     | R | U          | L | Т   | R  |  |
| Priority                                |        | 10      | 11     | 12   |       | 7    | 8     | 9 | 10 | 1     | 2     | 3 | 4U         | 4 | 5   | 6  |  |
| Number of Lanes                         |        | 0       | 0      | 0    |       | 0    | 0     | 0 | 0  | 0     | 1     | 0 | 0          | 0 | 1   | 0  |  |
| Configuration                           |        |         | LR     |      |       |      |       |   |    | LT    |       |   |            |   |     | TR |  |
| Volume, V (veh/h)                       |        | 1       |        | 5    |       |      |       |   |    | 7     | 0     |   |            |   | 150 | 2  |  |
| Percent Heavy Vehicles (%)              |        | 3       |        | 3    |       |      |       |   |    | 3     |       |   |            |   |     |    |  |
| Proportion Time Blocked                 |        |         |        |      |       |      |       |   |    |       |       |   |            |   |     |    |  |
| Percent Grade (%)                       |        | (       | )      |      |       |      |       |   |    |       |       |   |            |   |     |    |  |
| Right Turn Channelized                  |        | N       | lo     |      |       | Ν    | lo    |   |    | N     | 0     |   |            | Ν | lo  |    |  |
| Median Type/Storage                     |        |         |        | Undi | vided |      |       |   |    |       |       |   |            |   |     |    |  |
| Critical and Follow-up He               | adwa   | ys      |        |      |       |      |       |   |    |       |       |   |            |   |     |    |  |
| Base Critical Headway (sec)             |        | 7.1     |        | 6.2  |       |      |       |   |    | 4.1   |       |   |            |   |     |    |  |
| Critical Headway (sec)                  |        | 7.13    |        | 6.23 |       |      |       |   |    | 4.13  |       |   |            |   |     |    |  |
| Base Follow-Up Headway (sec)            |        | 3.5     |        | 3.3  |       |      |       |   |    | 2.2   |       |   |            |   |     |    |  |
| Follow-Up Headway (sec)                 |        | 3.53    |        | 3.33 |       |      |       |   |    | 2.23  |       |   |            |   |     |    |  |
| Delay, Queue Length, and                | d Leve | el of S | ervice | e    |       |      |       |   |    |       |       |   |            |   |     |    |  |
| Flow Rate, v (veh/h)                    |        |         | 13     |      |       |      |       |   |    | 15    |       |   |            |   |     |    |  |
| Capacity, c (veh/h)                     |        |         | 587    |      |       |      |       |   |    | 1077  |       |   |            |   |     |    |  |
| v/c Ratio                               |        |         | 0.02   |      |       |      |       |   |    | 0.01  |       |   |            |   |     |    |  |
| 95% Queue Length, Q <sub>95</sub> (veh) |        |         | 0.1    |      |       |      |       |   |    | 0.0   |       |   |            |   |     |    |  |
| Control Delay (s/veh)                   |        |         | 11.3   |      |       |      |       |   |    | 8.4   |       |   |            |   |     |    |  |
| Level of Service, LOS                   |        |         | В      |      |       |      |       |   |    | А     |       |   |            |   |     |    |  |
| Approach Delay (s/veh)                  |        | 11      | L.3    |      |       |      |       |   |    | 8     | .4    |   |            |   |     |    |  |
| Approach LOS                            |        | I       | 3      |      |       |      |       |   |    |       |       |   |            |   |     |    |  |

|                          | HCS7 Two-Way Sto     | p-Control Report           |                   |
|--------------------------|----------------------|----------------------------|-------------------|
| General Information      |                      | Site Information           |                   |
| Analyst                  | AJB                  | Intersection               | Windsor/Campbell  |
| Agency/Co.               | Eriksson Engineering | Jurisdiction               | Arlington Heights |
| Date Performed           | 01/31/2017           | East/West Street           | Campbell Street   |
| Analysis Year            | 2016                 | North/South Street         | Windsor Drive     |
| Time Analyzed            | 3:00 - 4:00 PM       | Peak Hour Factor           | 0.42              |
| Intersection Orientation | North-South          | Analysis Time Period (hrs) | 0.25              |
| Project Description      | Proposed Conditions  |                            |                   |



### Vehicle Volumes and Adjustments

| Approach                                |        | Eacth   | ound   |      |       | Worth | ound  |   |    | North | bound |   |    | Southbound |       |    |  |
|-----------------------------------------|--------|---------|--------|------|-------|-------|-------|---|----|-------|-------|---|----|------------|-------|----|--|
| Арргоасп                                |        | EdSLD   | ouna   |      |       | west  | Jouna |   |    | North | Jouna |   |    | South      | bound |    |  |
| Movement                                | U      | L       | Т      | R    | U     | L     | T     | R | U  | L     | T     | R | U  | L          | T     | R  |  |
| Priority                                |        | 10      | 11     | 12   |       | 7     | 8     | 9 | 10 | 1     | 2     | 3 | 4U | 4          | 5     | 6  |  |
| Number of Lanes                         |        | 0       | 0      | 0    |       | 0     | 0     | 0 | 0  | 0     | 1     | 0 | 0  | 0          | 1     | 0  |  |
| Configuration                           |        |         | LR     |      |       |       |       |   |    | LT    |       |   |    |            |       | TR |  |
| Volume, V (veh/h)                       |        | 0       |        | 11   |       |       |       |   |    | 3     | 0     |   |    |            | 83    | 3  |  |
| Percent Heavy Vehicles (%)              |        | 3       |        | 3    |       |       |       |   |    | 3     |       |   |    |            |       |    |  |
| Proportion Time Blocked                 |        |         |        |      |       |       |       |   |    |       |       |   |    |            |       |    |  |
| Percent Grade (%)                       |        | (       | C      |      |       |       |       |   |    |       |       |   |    |            |       |    |  |
| Right Turn Channelized                  |        | Ν       | lo     |      |       | N     | lo    |   |    | N     | 0     |   |    | Ν          | lo    |    |  |
| Median Type/Storage                     |        |         |        | Undi | vided |       |       |   |    |       |       |   |    |            |       |    |  |
| Critical and Follow-up He               | eadwa  | ys      |        |      |       |       |       |   |    |       |       |   |    |            |       |    |  |
| Base Critical Headway (sec)             |        | 7.1     |        | 6.2  |       |       |       |   |    | 4.1   |       |   |    |            |       |    |  |
| Critical Headway (sec)                  |        | 7.13    |        | 6.23 |       |       |       |   |    | 4.13  |       |   |    |            |       |    |  |
| Base Follow-Up Headway (sec)            |        | 3.5     |        | 3.3  |       |       |       |   |    | 2.2   |       |   |    |            |       |    |  |
| Follow-Up Headway (sec)                 |        | 3.53    |        | 3.33 |       |       |       |   |    | 2.23  |       |   |    |            |       |    |  |
| Delay, Queue Length, and                | d Leve | el of S | ervice | 9    |       |       |       |   |    |       |       |   |    |            |       |    |  |
| Flow Rate, v (veh/h)                    |        |         | 26     |      |       |       |       |   |    | 7     |       |   |    |            |       |    |  |
| Capacity, c (veh/h)                     |        |         | 715    |      |       |       |       |   |    | 1197  |       |   |    |            |       |    |  |
| v/c Ratio                               |        |         | 0.04   |      |       |       |       |   |    | 0.01  |       |   |    |            |       |    |  |
| 95% Queue Length, Q <sub>95</sub> (veh) |        |         | 0.1    |      |       |       |       |   |    | 0.0   |       |   |    |            |       |    |  |
| Control Delay (s/veh)                   |        |         | 10.2   |      |       |       |       |   |    | 8.0   |       |   |    |            |       |    |  |
| Level of Service, LOS                   |        |         | В      |      |       |       |       |   |    | А     |       |   |    |            |       |    |  |
| Approach Delay (s/veh)                  |        | 10      | ).2    |      |       |       |       |   |    | 8     | .0    |   |    |            |       |    |  |
| Approach LOS                            |        |         | 3      |      |       |       |       |   |    |       |       |   |    |            |       |    |  |

|                          | HCS7 Two-Way Sto     | p-Control Report           |                   |
|--------------------------|----------------------|----------------------------|-------------------|
| General Information      |                      | Site Information           |                   |
| Analyst                  | AJB                  | Intersection               | Windsor/Campbell  |
| Agency/Co.               | Eriksson Engineering | Jurisdiction               | Arlington Heights |
| Date Performed           | 01/31/2017           | East/West Street           | Campbell Street   |
| Analysis Year            | 2016                 | North/South Street         | Windsor Drive     |
| Time Analyzed            | 8:15 - 9:15 AM       | Peak Hour Factor           | 0.47              |
| Intersection Orientation | North-South          | Analysis Time Period (hrs) | 0.25              |
| Project Description      | Proposed Conditions  |                            |                   |



Major Street: North-South

| Vehicle Volumes and Ad                  | justmo | ents    |        |      |       |      |       |      |    |       |       |    |    |       |       |   |
|-----------------------------------------|--------|---------|--------|------|-------|------|-------|------|----|-------|-------|----|----|-------|-------|---|
| Approach                                | Τ      | Eastb   | ound   |      |       | West | bound |      |    | North | bound |    |    | South | bound |   |
| Movement                                | U      | L       | Т      | R    | U     | L    | Т     | R    | U  | L     | Т     | R  | U  | L     | Т     | R |
| Priority                                |        | 10      | 11     | 12   |       | 7    | 8     | 9    | 10 | 1     | 2     | 3  | 4U | 4     | 5     | 6 |
| Number of Lanes                         |        | 0       | 0      | 0    |       | 0    | 0     | 0    | 0  | 0     | 1     | 0  | 0  | 0     | 1     | 0 |
| Configuration                           |        |         |        |      |       |      | LR    |      |    |       |       | TR |    | LT    |       |   |
| Volume, V (veh/h)                       |        |         |        |      |       | 15   |       | 3    |    |       | 4     | 9  |    | 51    | 104   |   |
| Percent Heavy Vehicles (%)              |        |         |        |      |       | 3    |       | 3    |    |       |       |    |    | 3     |       |   |
| Proportion Time Blocked                 |        |         |        |      |       |      |       |      |    |       |       |    |    |       |       |   |
| Percent Grade (%)                       |        |         |        |      |       |      | 0     |      |    |       |       |    |    |       |       |   |
| Right Turn Channelized                  |        | Ν       | 10     |      |       | Ν    | 10    |      |    | ١     | ١o    |    |    | Ν     | 10    |   |
| Median Type/Storage                     |        |         |        | Undi | vided |      |       |      |    |       |       |    |    |       |       |   |
| <b>Critical and Follow-up H</b>         | eadwa  | iys     |        |      |       |      |       |      |    |       |       |    |    |       |       |   |
| Base Critical Headway (sec)             |        |         |        |      |       | 7.1  |       | 6.2  |    |       |       |    |    | 4.1   |       |   |
| Critical Headway (sec)                  |        |         |        |      |       | 7.13 |       | 6.23 |    |       |       |    |    | 4.13  |       |   |
| Base Follow-Up Headway (sec)            |        |         |        |      |       | 3.5  |       | 3.3  |    |       |       |    |    | 2.2   |       |   |
| Follow-Up Headway (sec)                 |        |         |        |      |       | 3.53 |       | 3.33 |    |       |       |    |    | 2.23  |       |   |
| Delay, Queue Length, an                 | d Leve | el of S | ervice | e    |       |      |       |      |    |       |       |    |    |       |       |   |
| Flow Rate, v (veh/h)                    |        |         |        |      |       |      | 38    |      |    |       |       |    |    | 109   |       |   |
| Capacity, c (veh/h)                     |        |         |        |      |       |      | 515   |      |    |       |       |    |    | 1553  |       |   |
| v/c Ratio                               |        |         |        |      |       |      | 0.07  |      |    |       |       |    |    | 0.07  |       |   |
| 95% Queue Length, Q <sub>95</sub> (veh) |        |         |        |      |       |      | 0.2   |      |    |       |       |    |    | 0.2   |       |   |
| Control Delay (s/veh)                   |        |         |        |      |       |      | 12.5  |      |    |       |       |    |    | 7.5   |       |   |
| Level of Service, LOS                   |        |         |        |      | B     |      |       |      |    |       |       |    | А  |       |       |   |
| Approach Delay (s/veh)                  | 12.5 2 |         |        |      |       |      |       |      |    | 2.9   |       |    |    |       |       |   |
| Approach LOS                            |        |         |        |      |       |      | в     |      |    |       |       |    |    |       |       |   |

Copyright © 2017 University of Florida. All Rights Reserved.

|                          | HCS7 Two-Wav Stor    | p-Control Report           |                   |
|--------------------------|----------------------|----------------------------|-------------------|
|                          |                      |                            |                   |
| General Information      |                      | Site Information           |                   |
| Analyst                  | AJB                  | Intersection               | Windsor/Campbell  |
| Agency/Co.               | Eriksson Engineering | Jurisdiction               | Arlington Heights |
| Date Performed           | 01/31/2017           | East/West Street           | Campbell Street   |
| Analysis Year            | 2016                 | North/South Street         | Windsor Drive     |
| Time Analyzed            | 3:00 - 4:00 PM       | Peak Hour Factor           | 0.42              |
| Intersection Orientation | North-South          | Analysis Time Period (hrs) | 0.25              |
| Project Description      | Proposed Conditions  |                            |                   |



| Vehicle Volumes and Ad                  | justmo | ents    |       |      |       |      |       |      |    |       |       |    |    |       |       |   |
|-----------------------------------------|--------|---------|-------|------|-------|------|-------|------|----|-------|-------|----|----|-------|-------|---|
| Approach                                |        | Eastb   | ound  |      |       | West | bound |      |    | North | bound |    |    | South | bound |   |
| Movement                                | U      | L       | Т     | R    | U     | L    | Т     | R    | U  | L     | Т     | R  | U  | L     | Т     | R |
| Priority                                |        | 10      | 11    | 12   |       | 7    | 8     | 9    | 10 | 1     | 2     | 3  | 4U | 4     | 5     | 6 |
| Number of Lanes                         |        | 0       | 0     | 0    |       | 0    | 0     | 0    | 0  | 0     | 1     | 0  | 0  | 0     | 1     | 0 |
| Configuration                           |        |         |       |      |       |      | LR    |      |    |       |       | TR |    | LT    |       |   |
| Volume, V (veh/h)                       |        |         |       |      |       | 10   |       | 3    |    |       | 0     | 14 |    | 36    | 58    |   |
| Percent Heavy Vehicles (%)              |        |         |       |      |       | 3    |       | 3    |    |       |       |    |    | 3     |       |   |
| Proportion Time Blocked                 |        |         |       |      |       |      |       |      |    |       |       |    |    |       |       |   |
| Percent Grade (%)                       |        |         |       |      |       |      | 0     |      |    |       |       |    |    |       |       |   |
| Right Turn Channelized                  |        | Ν       | 10    |      |       | Ν    | 10    |      |    | Ν     | lo    |    |    | Ν     | 10    |   |
| Median Type/Storage                     |        |         |       | Undi | vided |      |       |      |    |       |       |    |    |       |       |   |
| Critical and Follow-up H                | eadwa  | ays     |       |      |       |      |       |      |    |       |       |    |    |       |       |   |
| Base Critical Headway (sec)             |        |         |       |      |       | 7.1  |       | 6.2  |    |       |       |    |    | 4.1   |       |   |
| Critical Headway (sec)                  |        |         |       |      |       | 7.13 |       | 6.23 |    |       |       |    |    | 4.13  |       |   |
| Base Follow-Up Headway (sec)            |        |         |       |      |       | 3.5  |       | 3.3  |    |       |       |    |    | 2.2   |       |   |
| Follow-Up Headway (sec)                 |        |         |       |      |       | 3.53 |       | 3.33 |    |       |       |    |    | 2.23  |       |   |
| Delay, Queue Length, an                 | d Leve | el of S | ervic | e    |       |      |       |      |    |       |       |    |    |       |       |   |
| Flow Rate, v (veh/h)                    |        |         |       |      |       |      | 31    |      |    |       |       |    |    | 86    |       |   |
| Capacity, c (veh/h)                     |        |         |       |      |       |      | 651   |      |    |       |       |    |    | 1551  |       |   |
| v/c Ratio                               |        |         |       |      |       |      | 0.05  |      |    |       |       |    |    | 0.06  |       |   |
| 95% Queue Length, Q <sub>95</sub> (veh) |        |         |       |      |       |      | 0.1   |      |    |       |       |    |    | 0.2   |       |   |
| Control Delay (s/veh)                   |        |         |       |      |       |      | 10.8  |      |    |       |       |    |    | 7.5   |       |   |
| Level of Service, LOS                   |        |         |       |      |       |      | В     |      |    |       |       |    |    | А     |       |   |
| Approach Delay (s/veh)                  |        |         |       |      |       | 10   | 0.8   |      |    |       |       |    |    | 3     | .1    |   |
| Approach LOS                            |        |         |       |      |       |      | В     |      |    |       |       |    |    |       |       |   |

Copyright  $\ensuremath{\mathbb{C}}$  2017 University of Florida. All Rights Reserved.

HCS7™ TWSC Version 7.1 Campbell South 300 Prop.xtw

|                          | HCS7 Two-Way Sto     | p-Control Report           |                         |
|--------------------------|----------------------|----------------------------|-------------------------|
| General Information      |                      | Site Information           |                         |
| Analyst                  | AJB                  | Intersection               | Miner/Inbound Drive     |
| Agency/Co.               | Eriksson Engineering | Jurisdiction               | Arlington Heights       |
| Date Performed           | 01/31/2017           | East/West Street           | Miner Road              |
| Analysis Year            | 2016                 | North/South Street         | School Inbound Driveway |
| Time Analyzed            | 8:15 - 9:15 AM       | Peak Hour Factor           | 0.75                    |
| Intersection Orientation | East-West            | Analysis Time Period (hrs) | 0.25                    |
| Project Description      | Proposed Conditions  |                            |                         |



Major Street: East-West

| Vehicle Volumes and Adj                 | ustme  | ents    |        |      |       |      |       |   |   |       |       |   |   |       |       |    |
|-----------------------------------------|--------|---------|--------|------|-------|------|-------|---|---|-------|-------|---|---|-------|-------|----|
| Approach                                |        | Eastb   | ound   |      |       | West | bound |   |   | North | bound |   |   | South | bound |    |
| Movement                                | U      | L       | Т      | R    | U     | L    | Т     | R | U | L     | Т     | R | U | L     | Т     | R  |
| Priority                                | 10     | 1       | 2      | 3    | 4U    | 4    | 5     | 6 |   | 7     | 8     | 9 |   | 10    | 11    | 12 |
| Number of Lanes                         | 0      | 0       | 1      | 0    | 0     | 0    | 1     | 0 |   | 0     | 0     | 0 |   | 0     | 0     | 0  |
| Configuration                           |        |         |        | TR   |       | LT   |       |   |   |       |       |   |   |       |       |    |
| Volume, V (veh/h)                       |        |         | 90     | 109  |       | 42   | 106   |   |   |       |       |   |   |       |       |    |
| Percent Heavy Vehicles (%)              |        |         |        |      |       | 3    |       |   |   |       |       |   |   |       |       |    |
| Proportion Time Blocked                 |        |         |        |      |       |      |       |   |   |       |       |   |   |       |       |    |
| Percent Grade (%)                       |        |         |        |      |       |      |       |   |   |       |       |   |   |       |       |    |
| Right Turn Channelized                  |        | Ν       | lo     |      |       | Ν    | 10    |   |   | Ν     | 10    |   |   | Ν     | 10    |    |
| Median Type/Storage                     |        |         |        | Undi | vided |      |       |   |   |       |       |   |   |       |       |    |
| Critical and Follow-up Ho               | eadwa  | iys     |        |      |       |      |       |   |   |       |       |   |   |       |       |    |
| Base Critical Headway (sec)             |        |         |        |      |       | 4.1  |       |   |   |       |       |   |   |       |       |    |
| Critical Headway (sec)                  |        |         |        |      |       | 4.13 |       |   |   |       |       |   |   |       |       |    |
| Base Follow-Up Headway (sec)            |        |         |        |      |       | 2.2  |       |   |   |       |       |   |   |       |       |    |
| Follow-Up Headway (sec)                 |        |         |        |      |       | 2.23 |       |   |   |       |       |   |   |       |       |    |
| Delay, Queue Length, and                | d Leve | el of S | ervice | e    |       |      |       |   |   |       |       |   |   |       |       |    |
| Flow Rate, v (veh/h)                    |        |         |        |      |       | 56   |       |   |   |       |       |   |   |       |       |    |
| Capacity, c (veh/h)                     |        |         |        |      |       | 1237 |       |   |   |       |       |   |   |       |       |    |
| v/c Ratio                               |        |         |        |      |       | 0.05 |       |   |   |       |       |   |   |       |       |    |
| 95% Queue Length, Q <sub>95</sub> (veh) |        |         |        |      |       | 0.1  |       |   |   |       |       |   |   |       |       |    |
| Control Delay (s/veh)                   |        |         |        |      |       | 8.0  |       |   |   |       |       |   |   |       |       |    |
| Level of Service, LOS                   |        |         |        |      |       | A    |       |   |   |       |       |   |   |       |       |    |
| Approach Delay (s/veh)                  | 2.6    |         |        |      |       |      |       |   |   |       |       |   |   |       |       |    |
| Approach LOS                            |        |         |        |      |       |      |       |   |   |       |       |   |   |       |       |    |

Copyright © 2017 University of Florida. All Rights Reserved.

|                          | HCS7 Two-Way Sto     | p-Control Report           |                         |
|--------------------------|----------------------|----------------------------|-------------------------|
| General Information      |                      | Site Information           |                         |
| Analyst                  | AJB                  | Intersection               | Miner/Inbound Drive     |
| Agency/Co.               | Eriksson Engineering | Jurisdiction               | Arlington Heights       |
| Date Performed           | 01/31/2017           | East/West Street           | Miner Road              |
| Analysis Year            | 2016                 | North/South Street         | School Inbound Driveway |
| Time Analyzed            | 3:00 - 4:00 PM       | Peak Hour Factor           | 0.69                    |
| Intersection Orientation | East-West            | Analysis Time Period (hrs) | 0.25                    |
| Project Description      | Proposed Conditions  |                            |                         |
|                          |                      |                            |                         |



Major Street: East-West

| Vehicle Volumes and Ad                  | justmo | ents    |       |      |       |      |       |   |   |       |       |   |   |       |       |    |
|-----------------------------------------|--------|---------|-------|------|-------|------|-------|---|---|-------|-------|---|---|-------|-------|----|
| Approach                                |        | Eastb   | ound  |      |       | West | bound |   |   | North | bound |   |   | South | bound |    |
| Movement                                | U      | L       | Т     | R    | U     | L    | Т     | R | U | L     | Т     | R | U | L     | Т     | R  |
| Priority                                | 1U     | 1       | 2     | 3    | 4U    | 4    | 5     | 6 |   | 7     | 8     | 9 |   | 10    | 11    | 12 |
| Number of Lanes                         | 0      | 0       | 1     | 0    | 0     | 0    | 1     | 0 |   | 0     | 0     | 0 |   | 0     | 0     | 0  |
| Configuration                           |        |         |       | TR   |       | LT   |       |   |   |       |       |   |   |       |       |    |
| Volume, V (veh/h)                       |        |         | 98    | 59   |       | 30   | 111   |   |   |       |       |   |   |       |       |    |
| Percent Heavy Vehicles (%)              |        |         |       |      |       | 3    |       |   |   |       |       |   |   |       |       |    |
| Proportion Time Blocked                 |        |         |       |      |       |      |       |   |   |       |       |   |   |       |       |    |
| Percent Grade (%)                       |        |         |       |      |       |      |       |   |   |       |       |   |   |       |       |    |
| Right Turn Channelized                  |        | Ν       | lo    |      |       | Ν    | lo    |   |   | ١     | 10    |   |   | Ν     | lo    |    |
| Median Type/Storage                     |        |         |       | Undi | vided |      |       |   |   |       |       |   |   |       |       |    |
| Critical and Follow-up H                | eadwa  | ays     |       |      |       |      |       |   |   |       |       |   |   |       |       |    |
| Base Critical Headway (sec)             |        |         |       |      |       | 4.1  |       |   |   |       |       |   |   |       |       |    |
| Critical Headway (sec)                  |        |         |       |      |       | 4.13 |       |   |   |       |       |   |   |       |       |    |
| Base Follow-Up Headway (sec)            |        |         |       |      |       | 2.2  |       |   |   |       |       |   |   |       |       |    |
| Follow-Up Headway (sec)                 |        |         |       |      |       | 2.23 |       |   |   |       |       |   |   |       |       |    |
| Delay, Queue Length, an                 | d Leve | el of S | ervic | e    |       |      |       |   |   |       |       |   |   |       |       |    |
| Flow Rate, v (veh/h)                    |        |         |       |      |       | 43   |       |   |   |       |       |   |   |       |       |    |
| Capacity, c (veh/h)                     |        |         |       |      |       | 1239 |       |   |   |       |       |   |   |       |       |    |
| v/c Ratio                               |        |         |       |      |       | 0.03 |       |   |   |       |       |   |   |       |       |    |
| 95% Queue Length, Q <sub>95</sub> (veh) |        |         |       |      |       | 0.1  |       |   |   |       |       |   |   |       |       |    |
| Control Delay (s/veh)                   |        |         |       |      |       | 8.0  |       |   |   |       |       |   |   |       |       |    |
| Level of Service, LOS                   |        |         |       |      |       | A    |       |   |   |       |       |   |   |       |       |    |
| Approach Delay (s/veh)                  |        |         |       |      |       | 1    | .9    |   |   |       |       |   |   |       |       |    |
| Approach LOS                            |        |         |       |      |       |      |       |   |   |       |       |   |   |       |       |    |

Copyright © 2017 University of Florida. All Rights Reserved.

| HCS7 Two-Way Stop-Control Report |                      |                            |                    |  |  |  |  |  |  |  |  |
|----------------------------------|----------------------|----------------------------|--------------------|--|--|--|--|--|--|--|--|
| General Information              |                      | Site Information           |                    |  |  |  |  |  |  |  |  |
| Analyst                          | AJB                  | Intersection               | Kensington/Windsor |  |  |  |  |  |  |  |  |
| Agency/Co.                       | Eriksson Engineering | Jurisdiction               | Arlington Heights  |  |  |  |  |  |  |  |  |
| Date Performed                   | 01/31/2017           | East/West Street           | Kensington Road    |  |  |  |  |  |  |  |  |
| Analysis Year                    | 2016                 | North/South Street         | Windsor Drive      |  |  |  |  |  |  |  |  |
| Time Analyzed                    | 8:15 - 9:15 AM       | Peak Hour Factor           | 0.72               |  |  |  |  |  |  |  |  |
| Intersection Orientation         | East-West            | Analysis Time Period (hrs) | 0.25               |  |  |  |  |  |  |  |  |
| Project Description              | Proposed Conditions  |                            |                    |  |  |  |  |  |  |  |  |



Major Street: East-West

| Vehicle Volumes and Adj                 | ustme  | ents    |        |      |       |      |       |      |   |       |       |      |    |       |       |      |  |  |
|-----------------------------------------|--------|---------|--------|------|-------|------|-------|------|---|-------|-------|------|----|-------|-------|------|--|--|
| Approach                                |        | Eastb   | ound   |      |       | West | bound |      |   | North | bound |      |    | South | bound |      |  |  |
| Movement                                | U      | L       | Т      | R    | U     | L    | Т     | R    | U | L     | Т     | R    | U  | L     | Т     | R    |  |  |
| Priority                                | 1U     | 1       | 2      | 3    | 4U    | 4    | 5     | 6    |   | 7     | 8     | 9    |    | 10    | 11    | 12   |  |  |
| Number of Lanes                         | 0      | 1       | 1      | 0    | 0     | 1    | 1     | 0    |   | 0     | 1     | 0    |    | 0     | 1     | 0    |  |  |
| Configuration                           |        | L       |        | TR   |       | L    |       | TR   |   |       | LTR   |      |    |       | LTR   |      |  |  |
| Volume, V (veh/h)                       |        | 3       | 207    | 7    |       | 11   | 231   | 5    |   | 9     | 5     | 19   |    | 36    | 36    | 47   |  |  |
| Percent Heavy Vehicles (%)              |        | 3       |        |      |       | 3    |       |      |   | 3     | 3     | 3    |    | 3     | 3     | 3    |  |  |
| Proportion Time Blocked                 |        |         |        |      |       |      |       |      |   |       |       |      |    |       |       |      |  |  |
| Percent Grade (%)                       |        |         |        |      |       |      |       |      |   |       | 0     |      | 0  |       |       |      |  |  |
| Right Turn Channelized                  |        | Ν       | lo     |      |       | Ν    | lo    |      |   | Ν     | lo    |      | No |       |       |      |  |  |
| Median Type/Storage                     |        |         |        | Undi | vided |      |       |      |   |       |       |      |    |       |       |      |  |  |
| Critical and Follow-up He               | eadwa  | ays     |        |      |       |      |       |      |   |       |       |      |    |       |       |      |  |  |
| Base Critical Headway (sec)             |        | 4.1     |        |      |       | 4.1  |       |      |   | 7.1   | 6.5   | 6.2  |    | 7.1   | 6.5   | 6.2  |  |  |
| Critical Headway (sec)                  |        | 4.13    |        |      |       | 4.13 |       |      |   | 7.13  | 6.53  | 6.23 |    | 7.13  | 6.53  | 6.23 |  |  |
| Base Follow-Up Headway (sec)            |        | 2.2     |        |      |       | 2.2  |       |      |   | 3.5   | 4.0   | 3.3  |    | 3.5   | 4.0   | 3.3  |  |  |
| Follow-Up Headway (sec)                 |        | 2.23    |        |      |       | 2.23 |       |      |   | 3.53  | 4.03  | 3.33 |    | 3.53  | 4.03  | 3.33 |  |  |
| Delay, Queue Length, and                | d Leve | el of S | ervice | 9    |       |      |       |      |   |       |       |      |    |       |       |      |  |  |
| Flow Rate, v (veh/h)                    |        | 4       |        |      |       | 15   |       |      |   |       | 45    |      |    |       | 165   |      |  |  |
| Capacity, c (veh/h)                     |        | 1201    |        |      |       | 1180 |       |      |   |       | 400   |      |    |       | 406   |      |  |  |
| v/c Ratio                               |        | 0.00    |        |      |       | 0.01 |       |      |   |       | 0.11  |      |    |       | 0.41  |      |  |  |
| 95% Queue Length, Q <sub>95</sub> (veh) |        | 0.0     |        |      |       | 0.0  |       |      |   |       | 0.4   |      |    |       | 1.9   |      |  |  |
| Control Delay (s/veh)                   |        | 8.0     |        |      |       | 8.1  |       |      |   |       | 15.1  |      |    |       | 19.8  |      |  |  |
| Level of Service, LOS                   |        | A       |        |      |       | А    |       |      | С |       |       |      |    |       | С     |      |  |  |
| Approach Delay (s/veh)                  |        | 0       | .1     |      | 0.4   |      |       | 15.1 |   |       |       | 19.8 |    |       |       |      |  |  |
| Approach LOS                            |        |         |        |      |       |      |       |      |   |       | c     |      | С  |       |       |      |  |  |

Copyright © 2017 University of Florida. All Rights Reserved.

HCS7™ TWSC Version 7.1 Kensington 815 Prop.xtw

|                          | HCS7 Two-Way Stop-Control Report |                            |                    |  |  |  |  |  |  |  |  |  |
|--------------------------|----------------------------------|----------------------------|--------------------|--|--|--|--|--|--|--|--|--|
| General Information      |                                  | Site Information           |                    |  |  |  |  |  |  |  |  |  |
| Analyst                  | AJB                              | Intersection               | Kensington/Windsor |  |  |  |  |  |  |  |  |  |
| Agency/Co.               | Eriksson Engineering             | Jurisdiction               | Arlington Heights  |  |  |  |  |  |  |  |  |  |
| Date Performed           | 01/31/2017                       | East/West Street           | Kensington Road    |  |  |  |  |  |  |  |  |  |
| Analysis Year            | 2016                             | North/South Street         | Windsor Drive      |  |  |  |  |  |  |  |  |  |
| Time Analyzed            | 3:00 - 4:00 PM                   | Peak Hour Factor           | 0.88               |  |  |  |  |  |  |  |  |  |
| Intersection Orientation | East-West                        | Analysis Time Period (hrs) | 0.25               |  |  |  |  |  |  |  |  |  |
| Project Description      | Proposed Conditions              |                            |                    |  |  |  |  |  |  |  |  |  |



Major Street: East-West

| venicle volumes and Adj                 | ustme   | ents    |        |      |       |      |       |      |   |       |       |      |   |       |       |      |  |
|-----------------------------------------|---------|---------|--------|------|-------|------|-------|------|---|-------|-------|------|---|-------|-------|------|--|
| Approach                                |         | Eastb   | ound   |      |       | West | bound |      |   | North | bound |      |   | South | bound |      |  |
| Movement                                | U       | L       | Т      | R    | U     | L    | Т     | R    | U | L     | Т     | R    | U | L     | Т     | R    |  |
| Priority                                | 1U      | 1       | 2      | 3    | 4U    | 4    | 5     | 6    |   | 7     | 8     | 9    |   | 10    | 11    | 12   |  |
| Number of Lanes                         | 0       | 1       | 1      | 0    | 0     | 1    | 1     | 0    |   | 0     | 1     | 0    |   | 0     | 1     | 0    |  |
| Configuration                           |         | L       |        | TR   |       | L    |       | TR   |   |       | LTR   |      |   |       | LTR   |      |  |
| Volume, V (veh/h)                       |         | 3       | 237    | 8    |       | 11   | 361   | 6    |   | 16    | 5     | 22   |   | 20    | 24    | 20   |  |
| Percent Heavy Vehicles (%)              |         | 3       |        |      |       | 3    |       |      |   | 3     | 3     | 3    |   | 3     | 3     | 3    |  |
| Proportion Time Blocked                 |         |         |        |      |       |      |       |      |   |       |       |      |   |       |       |      |  |
| Percent Grade (%)                       |         |         |        |      |       |      |       |      |   | (     | C     |      | 0 |       |       |      |  |
| Right Turn Channelized                  |         | Ν       | lo     |      |       | Ν    | lo    |      |   | Ν     | lo    |      |   | Ν     | lo    |      |  |
| Median Type/Storage                     |         |         |        | Undi | vided |      |       |      |   |       |       |      |   |       |       |      |  |
| Critical and Follow-up He               | eadwa   | iys     |        |      |       |      |       |      |   |       |       |      |   |       |       |      |  |
| Base Critical Headway (sec)             |         | 4.1     |        |      |       | 4.1  |       |      |   | 7.1   | 6.5   | 6.2  |   | 7.1   | 6.5   | 6.2  |  |
| Critical Headway (sec)                  |         | 4.13    |        |      |       | 4.13 |       |      |   | 7.13  | 6.53  | 6.23 |   | 7.13  | 6.53  | 6.23 |  |
| Base Follow-Up Headway (sec)            |         | 2.2     |        |      |       | 2.2  |       |      |   | 3.5   | 4.0   | 3.3  |   | 3.5   | 4.0   | 3.3  |  |
| Follow-Up Headway (sec)                 |         | 2.23    |        |      |       | 2.23 |       |      |   | 3.53  | 4.03  | 3.33 |   | 3.53  | 4.03  | 3.33 |  |
| Delay, Queue Length, and                | d Leve  | el of S | ervice | 9    |       |      |       |      |   |       |       |      |   |       |       |      |  |
| Flow Rate, v (veh/h)                    |         | 3       |        |      |       | 12   |       |      |   |       | 49    |      |   |       | 73    |      |  |
| Capacity, c (veh/h)                     |         | 1110    |        |      |       | 1199 |       |      |   |       | 381   |      |   |       | 356   |      |  |
| v/c Ratio                               |         | 0.00    |        |      |       | 0.01 |       |      |   |       | 0.13  |      |   |       | 0.21  |      |  |
| 95% Queue Length, Q <sub>95</sub> (veh) |         | 0.0     |        |      |       | 0.0  |       |      |   |       | 0.4   |      |   |       | 0.8   |      |  |
| Control Delay (s/veh)                   |         | 8.3     |        |      |       | 8.0  |       |      |   |       | 15.8  |      |   |       | 17.7  |      |  |
| Level of Service, LOS                   |         | A       |        |      | A     |      |       | С    |   |       |       |      |   | С     |       |      |  |
| Approach Delay (s/veh)                  | 0.1 0.2 |         |        |      |       |      |       | 15.8 |   |       |       | 17.7 |   |       |       |      |  |
| Approach LOS                            |         |         |        |      |       |      |       |      | C |       |       |      |   | C     |       |      |  |

Copyright  $\ensuremath{\mathbb{C}}$  2017 University of Florida. All Rights Reserved.

HCS7™ TWSC Version 7.1

Kensington 300 Prop.xtw

Г

|                                  |             | ALL-WA         | 1 310P C  | UNTROL        | ANALISI         | 0      |             |        |  |  |  |  |  |
|----------------------------------|-------------|----------------|-----------|---------------|-----------------|--------|-------------|--------|--|--|--|--|--|
| General Information              |             |                |           | Site Inforr   | mation          |        |             |        |  |  |  |  |  |
| Analyst                          | AJB         |                |           | Intersection  |                 | Minen  | /Windsor    |        |  |  |  |  |  |
| Agency/Co.                       | Eriksso     | on Engineering | 1         | Jurisdiction  | r               | Arling | ton Heights |        |  |  |  |  |  |
| Date Performed                   | 01/31/2     | 2017           |           |               |                 | 2010   |             |        |  |  |  |  |  |
|                                  | 0.75-3      | 9. I J AIVI    |           |               |                 |        |             |        |  |  |  |  |  |
| Foject ID Proposed Condition     |             |                |           | North/South S | Stroot: Windoor | Drivo  |             |        |  |  |  |  |  |
|                                  |             |                |           | North/South S | street. Windson |        |             |        |  |  |  |  |  |
| volume Adjustments               | and Site Cr | Iaracterist    | asthound  |               |                 | We     | esthound    |        |  |  |  |  |  |
| lovement                         | L           |                | T         | R             | L               |        | Т           | R      |  |  |  |  |  |
| 'olume (veh/h)                   | 21          |                | 57        | 48            | 77              |        | 59          | 4      |  |  |  |  |  |
| Thrus Left Lane                  |             |                |           |               |                 |        |             |        |  |  |  |  |  |
| pproach                          |             | N              | orthbound |               |                 | Sou    | uthbound    |        |  |  |  |  |  |
| lovement                         | L           |                | Т         | R             | L               |        | T           | R      |  |  |  |  |  |
| 'olume (veh/h)                   | - 0         |                | 0         | 0             | 1               |        | 27          | 17     |  |  |  |  |  |
| Thrus Left Lane                  |             |                |           |               |                 |        |             |        |  |  |  |  |  |
|                                  | East        | bound          | Wes       | tbound        | North           | bound  | Sout        | hbound |  |  |  |  |  |
|                                  | L1          | L2             | L1        | L2            | L1              | L2     | L1          | L2     |  |  |  |  |  |
| onfiguration                     | LTR         | 1              | LTR       |               | LTR             |        | LTR         | 1      |  |  |  |  |  |
| чНF                              | 0.61        |                | 0.61      |               | 0.61            |        | 0.61        | 1      |  |  |  |  |  |
| low Rate (veh/h)                 | 205         |                | 228       |               | 0               |        | 72          |        |  |  |  |  |  |
| 6 Heavy Vehicles                 | 0           |                | 0         |               | 0               |        | 0           |        |  |  |  |  |  |
| lo. Lanes                        |             | 1              |           | 1             | 1               | 1      |             | 1      |  |  |  |  |  |
| eometry Group                    |             | 1              |           | 1             | 1               | 1      |             | 1      |  |  |  |  |  |
| Juration, T                      |             |                |           | 0.            | .25             |        |             |        |  |  |  |  |  |
| Saturation Headway               | Adjustment  | Workshee       | et        |               |                 |        |             |        |  |  |  |  |  |
| Prop. Left-Turns                 | 0.2         |                | 0.6       |               | 0.0             |        | 0.0         |        |  |  |  |  |  |
| rop. Right-Turns                 | 0.4         |                | 0.0       |               | 0.0             |        | 04          |        |  |  |  |  |  |
| Prop. Heavy Vehicle              | 0.0         |                | 0.0       |               | 0.0             |        | 0.0         |        |  |  |  |  |  |
| I T-adi                          | 0.0         | 0.2            | 0.0       | 0.2           | 0.0             | 0.2    | 0.0         | 0.2    |  |  |  |  |  |
| RT-adi                           | -0.6        | -0.6           | -0.6      | -0.6          | -0.6            | -0.6   | -0.6        | -0.6   |  |  |  |  |  |
| W/ adj                           | -0.0        | -0.0           | -0.0      | -0.0          | -0.0            | -0.0   | -0.0        | -0.0   |  |  |  |  |  |
|                                  | 1.7         | 1.7            | 0.1       | 1.7           | 1.7             | 1.7    | 1.7         | 1.7    |  |  |  |  |  |
|                                  | -0.2        | <u> </u>       | 0.1       |               | 0.0             |        | -0.2        |        |  |  |  |  |  |
| Departure Headway a              | and Service |                |           |               |                 | 1      |             |        |  |  |  |  |  |
| d, initial value (s)             | 3.20        |                | 3.20      |               | 3.20            |        | 3.20        |        |  |  |  |  |  |
| , initial                        | 0.18        |                | 0.20      |               | 0.00            | ļ      | 0.06        |        |  |  |  |  |  |
| d, final value (s)               | 4.12        |                | 4.38      |               | 4.95            |        | 4.62        |        |  |  |  |  |  |
| , final value                    | 0.235       |                | 0.277     |               | 0.000           |        | 0.092       |        |  |  |  |  |  |
| love-up time, m (s)              | 2.          |                | 2         | .0            | 2.              |        | 4           | 2.0    |  |  |  |  |  |
| service Time, t <sub>s</sub> (s) | 2.1         |                | 2.4       |               | 3.0             |        | 2.6         |        |  |  |  |  |  |
| Capacity and Level o             | f Service   |                |           |               |                 |        |             |        |  |  |  |  |  |
|                                  | East        | bound          | Wes       | tbound        | North           | bound  | Sout        | hbound |  |  |  |  |  |
|                                  | L1          | L2             | L1        | L2            | L1              | L2     | L1          | L2     |  |  |  |  |  |
| apacity (veh/h)                  | 891         |                | 814       |               |                 |        | 800         | 1      |  |  |  |  |  |
| elay (s/veh)                     | 84          |                | 00        |               | 80              |        | 81          |        |  |  |  |  |  |
|                                  | Δ.+         |                | 9.0<br>A  |               | 0.0<br>A        |        | A           |        |  |  |  |  |  |
|                                  |             |                |           |               |                 |        |             |        |  |  |  |  |  |
| .pproach: Delay (s/veh)          | -           | 8.4            | 9         | .0            | 8.              | .0 8.1 |             |        |  |  |  |  |  |
| LOS                              |             | Α              | /         | 4             | A               | 1      | ·           | A      |  |  |  |  |  |
| ntersection Delay (s/veh)        | 1           |                |           | 8             | 3.6             |        |             |        |  |  |  |  |  |
| ntersection LOS                  |             |                |           |               | A               |        |             |        |  |  |  |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | ALL-WA        | Y STOP C   | ONTROL        | ANALYSI         | S        |             |         |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|------------|---------------|-----------------|----------|-------------|---------|--|--|
| General Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |               |            | Site Infor    | mation          |          |             |         |  |  |
| Analyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AJB        |               |            | Intersection  |                 | Miner    | r/Windsor   |         |  |  |
| Agency/Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Erikss     | on Engineerin | g          | Jurisdiction  |                 | Arling   | ton Heights |         |  |  |
| Date Performed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 01/31/     | 2017          |            | Analysis Yea  | Г               | 2016     |             |         |  |  |
| Analysis Time Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3:00 -     | 4:00 PM       |            | _ <u> </u>    |                 |          |             |         |  |  |
| Project ID Proposed Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | าร         |               |            |               | Directo 144     | Defer    |             |         |  |  |
| East/West Street: Miner Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | et         |               |            | North/South S | Street: Windsor | Drive    |             |         |  |  |
| Volume Adjustments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and Site C | haracteris    | tics       |               |                 | 10/-     |             |         |  |  |
| Approach<br>Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |               | T          | R             | _               | V        |             | R       |  |  |
| Volume (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21         | 1             | 58         | 34            | 29              |          | 48          | 3       |  |  |
| %Thrus Left Lane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |            | -             |                 |          | _           | -       |  |  |
| Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |               | Northbound |               |                 | Sou      | uthbound    |         |  |  |
| Movement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L          |               | Т          | R             | L               |          | Т           | R       |  |  |
| Volume (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20         | )             | 30         | 7             | 9               |          | 23          | 18      |  |  |
| %Thrus Left Lane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |               |            |               |                 |          |             |         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | East       | tbound        | Wes        | stbound       | North           | bound    | Sou         | thbound |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L1         | L2            | L1         | L2            | L1              | L2       | L1          | L2      |  |  |
| Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ITR        | +             | I TR       |               | ITR             | <u> </u> | ITR         |         |  |  |
| PHF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.82       | 1             | 0.82       |               | 0.82            |          | 0.82        | 1       |  |  |
| Flow Rate (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 136        |               | 96         |               | 68              |          | 59          | 1       |  |  |
| % Heavy Vehicles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0          |               | 0          |               | 0               |          | 0           |         |  |  |
| No. Lanes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 1             |            | 1             |                 | 1        |             | 1       |  |  |
| Geometry Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 1             |            | 1             |                 | 1        |             | 1       |  |  |
| Duration, T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | -             |            | 0             | .25             | -        |             | -       |  |  |
| Saturation Headway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Adjustment | Workshe       | et         |               |                 |          |             |         |  |  |
| Prop. Left-Turns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2        |               | 0.4        |               | 0.4             |          | 0.2         |         |  |  |
| Prop. Right-Turns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.3        |               | 0.0        |               | 0.1             |          | 0.4         |         |  |  |
| Prop. Heavy Vehicle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0        |               | 0.0        |               | 0.0             |          | 0.0         |         |  |  |
| hLT-adi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2        | 0.2           | 0.2        | 0.2           | 0.2             | 0.2      | 0.2         | 0.2     |  |  |
| hRT-adi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.6       | -0.6          | -0.6       | -0.6          | -0.6            | -0.6     | -0.6        | -0.6    |  |  |
| hHV-adi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17         | 17            | 17         | 17            | 17              | 17       | 17          | 17      |  |  |
| hadi computed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.1       | 1.1           | 0.1        | ,.,           | -0.0            | 1.1      | -0.2        | ,.,     |  |  |
| Doporturo Hoodway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | Timo          | 0.7        |               | 0.0             |          | 0.2         |         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |               | 2.00       |               | 2.00            | 1        | 2.00        |         |  |  |
| nd, initial value (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.20       |               | 3.20       |               | 3.20            |          | 3.20        |         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.12       |               | 1 20       |               | 0.00            |          | 4.20        |         |  |  |
| ria, iiiiai value (δ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 157      |               | 0 117      |               | 0.085           |          | 4.32        | +       |  |  |
| Move-un time m (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.107      | 0             | 0.111      | <u> </u>      | 0.000           | 0        | 0.077       | 20      |  |  |
| $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$ | 2          |               | 2          |               | 2.              | 1        |             |         |  |  |
| Service Time, t <sub>s</sub> (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>   |               | 2.4        |               | 2.5             |          | 2.3         |         |  |  |
| Capacity and Level o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t Service  |               |            |               |                 |          |             |         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | East       | tbound        | Wes        | tbound        | North           | bound    | Sou         | thbound |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L1         | L2            | L1         | L2            | L1              | L2       | L1          | L2      |  |  |
| Capacity (veh/h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 850        |               | 800        |               | 850             |          | 843         |         |  |  |
| Delay (s/veh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.9        | 1             | 8.0        |               | 7.9             |          | 7.6         |         |  |  |
| LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A          |               | A          |               | A               |          | A           |         |  |  |
| Approach: Delay (s/yeb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 70            |            | 20            | 7               | 9        | + <u> </u>  | 7.6     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | 1.3           |            | Λ             |                 |          | - <u>+</u>  |         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | А             |            | <u>н</u>      | 7.0             | 1        |             | А       |  |  |
| Intersection Delay (s/veh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |               |            |               | <u>л.9</u><br>Л |          |             |         |  |  |
| Intersection LOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1          |               |            | A             |                 |          |             |         |  |  |

Copyright © 2010 University of Florida, All Rights Reserved

HCS+<sup>TM</sup> Version 5.6

Generated: 1/31/2017 2:47 PM

|                          | HCS7 Two-Way Stop    | o-Control Report           |                          |
|--------------------------|----------------------|----------------------------|--------------------------|
| General Information      |                      | Site Information           |                          |
| Analyst                  | AJB                  | Intersection               | Miner/Outbound Drive     |
| Agency/Co.               | Eriksson Engineering | Jurisdiction               | Arlington Heights        |
| Date Performed           | 01/31/2017           | East/West Street           | Miner Road               |
| Analysis Year            | 2016                 | North/South Street         | School Outbound Driveway |
| Time Analyzed            | 8:15 - 9:15 AM       | Peak Hour Factor           | 0.75                     |
| Intersection Orientation | East-West            | Analysis Time Period (hrs) | 0.25                     |
| Project Description      | Proposed Conditions  |                            |                          |



### Major Street: East-West

| Vehicle Volumes and Adj                 | ustme  | ents    |        |      |       |      |       |   |      |       |       |      |   |       |       |    |  |
|-----------------------------------------|--------|---------|--------|------|-------|------|-------|---|------|-------|-------|------|---|-------|-------|----|--|
| Approach                                |        | Eastb   | ound   |      |       | West | bound |   |      | North | bound |      |   | South | bound |    |  |
| Movement                                | U      | L       | Т      | R    | U     | L    | Т     | R | U    | L     | Т     | R    | U | L     | Т     | R  |  |
| Priority                                | 1U     | 1       | 2      | 3    | 4U    | 4    | 5     | 6 |      | 7     | 8     | 9    |   | 10    | 11    | 12 |  |
| Number of Lanes                         | 0      | 0       | 1      | 0    | 0     | 0    | 1     | 0 |      | 1     | 0     | 1    |   | 0     | 0     | 0  |  |
| Configuration                           |        |         | Т      |      |       |      | Т     |   |      | L     |       | R    |   |       |       |    |  |
| Volume, V (veh/h)                       |        |         | 90     |      |       |      | 76    |   |      | 72    |       | 36   |   |       |       |    |  |
| Percent Heavy Vehicles (%)              |        |         |        |      |       |      |       |   |      | 3     |       | 3    |   |       |       |    |  |
| Proportion Time Blocked                 |        |         |        |      |       |      |       |   |      |       |       |      |   |       |       |    |  |
| Percent Grade (%)                       |        |         |        |      |       |      |       |   |      | (     | 0     |      |   |       |       |    |  |
| Right Turn Channelized                  |        | Ν       | lo     |      |       | Ν    | lo    |   |      | Ν     | lo    |      |   | Ν     | lo    |    |  |
| Median Type/Storage                     |        |         |        | Undi | vided | ed   |       |   |      |       |       |      |   |       |       |    |  |
| Critical and Follow-up He               | eadwa  | iys     |        |      |       |      |       |   |      |       |       |      |   |       |       |    |  |
| Base Critical Headway (sec)             |        |         |        |      |       |      |       |   |      | 7.1   |       | 6.2  |   |       |       |    |  |
| Critical Headway (sec)                  |        |         |        |      |       |      |       |   |      | 7.13  |       | 6.23 |   |       |       |    |  |
| Base Follow-Up Headway (sec)            |        |         |        |      |       |      |       |   |      | 3.5   |       | 3.3  |   |       |       |    |  |
| Follow-Up Headway (sec)                 |        |         |        |      |       |      |       |   |      | 3.53  |       | 3.33 |   |       |       |    |  |
| Delay, Queue Length, and                | d Leve | el of S | ervice | e    |       |      |       |   |      |       |       |      |   |       |       |    |  |
| Flow Rate, v (veh/h)                    |        |         |        |      |       |      |       |   |      | 96    |       | 48   |   |       |       |    |  |
| Capacity, c (veh/h)                     |        |         |        |      |       |      |       |   |      | 695   |       | 884  |   |       |       |    |  |
| v/c Ratio                               |        |         |        |      |       |      |       |   |      | 0.14  |       | 0.05 |   |       |       |    |  |
| 95% Queue Length, Q <sub>95</sub> (veh) |        |         |        |      |       |      |       |   |      | 0.5   |       | 0.2  |   |       |       |    |  |
| Control Delay (s/veh)                   |        |         |        |      |       |      |       |   |      | 11.0  |       | 9.3  |   |       |       |    |  |
| Level of Service, LOS                   |        |         |        |      |       |      |       |   | BA   |       |       | А    |   |       |       |    |  |
| Approach Delay (s/veh)                  |        |         |        |      |       |      |       |   | 10.4 |       |       |      |   |       |       |    |  |
| Approach LOS                            |        |         |        |      |       |      |       | В |      |       |       |      |   |       |       |    |  |

Copyright  $\ensuremath{\mathbb{C}}$  2017 University of Florida. All Rights Reserved.

|                          | HCS7 Two-Way Stop    | p-Control Report           |                          |
|--------------------------|----------------------|----------------------------|--------------------------|
| General Information      |                      | Site Information           |                          |
| Analyst                  | AJB                  | Intersection               | Miner/Outbound Drive     |
| Agency/Co.               | Eriksson Engineering | Jurisdiction               | Arlington Heights        |
| Date Performed           | 01/31/2017           | East/West Street           | Miner Road               |
| Analysis Year            | 2016                 | North/South Street         | School Outbound Driveway |
| Time Analyzed            | 3:00 - 4:00 PM       | Peak Hour Factor           | 0.69                     |
| Intersection Orientation | East-West            | Analysis Time Period (hrs) | 0.25                     |
| Project Description      | Proposed Conditions  |                            |                          |
|                          |                      |                            |                          |



Major Street: East-West

| Vehicle Volumes and Ad                  | ljustmo | ents    |       |      |       |      |       |     |      |       |       |      |   |       |       |    |
|-----------------------------------------|---------|---------|-------|------|-------|------|-------|-----|------|-------|-------|------|---|-------|-------|----|
| Approach                                |         | Eastk   | ound  |      |       | West | bound |     |      | North | bound |      |   | South | bound |    |
| Movement                                | U       | L       | Т     | R    | U     | L    | Т     | R   | U    | L     | Т     | R    | U | L     | Т     | R  |
| Priority                                | 1U      | 1       | 2     | 3    | 4U    | 4    | 5     | 6   |      | 7     | 8     | 9    |   | 10    | 11    | 12 |
| Number of Lanes                         | 0       | 0       | 1     | 0    | 0     | 0    | 1     | 0   |      | 1     | 0     | 1    |   | 0     | 0     | 0  |
| Configuration                           |         |         | Т     |      |       |      | Т     |     |      | L     |       | R    |   |       |       |    |
| Volume, V (veh/h)                       |         |         | 89    |      |       |      | 66    |     |      | 75    |       | 24   |   |       |       |    |
| Percent Heavy Vehicles (%)              |         |         |       |      |       |      |       |     |      | 3     |       | 3    |   |       |       |    |
| Proportion Time Blocked                 |         |         |       |      |       |      |       |     |      |       |       |      |   |       |       |    |
| Percent Grade (%)                       |         |         |       |      |       |      |       |     | 0    |       |       |      |   |       |       |    |
| Right Turn Channelized                  |         | ١       | lo    |      |       | ١    | lo    |     |      | Ν     | lo    |      |   | Ν     | 10    |    |
| Median Type/Storage                     |         |         |       | Undi | vided |      |       |     |      |       |       |      |   |       |       |    |
| Critical and Follow-up H                | eadwa   | iys     |       |      |       |      |       |     |      |       |       |      |   |       |       |    |
| Base Critical Headway (sec)             |         |         |       |      |       |      |       |     |      | 7.1   |       | 6.2  |   |       |       |    |
| Critical Headway (sec)                  |         |         |       |      |       |      |       |     |      | 7.13  |       | 6.23 |   |       |       |    |
| Base Follow-Up Headway (sec)            |         |         |       |      |       |      |       |     |      | 3.5   |       | 3.3  |   |       |       |    |
| Follow-Up Headway (sec)                 |         |         |       |      |       |      |       |     |      | 3.53  |       | 3.33 |   |       |       |    |
| Delay, Queue Length, ar                 | nd Leve | el of S | ervic | е    |       |      |       |     |      |       |       |      |   |       |       |    |
| Flow Rate, v (veh/h)                    |         |         |       |      |       |      |       |     |      | 109   |       | 35   |   |       |       |    |
| Capacity, c (veh/h)                     |         |         |       |      |       |      |       |     |      | 655   |       | 835  |   |       |       |    |
| v/c Ratio                               |         |         |       |      |       |      |       |     |      | 0.17  |       | 0.04 |   |       |       |    |
| 95% Queue Length, Q <sub>95</sub> (veh) |         |         |       |      |       |      |       |     |      | 0.6   |       | 0.1  |   |       |       |    |
| Control Delay (s/veh)                   |         |         |       |      |       |      |       |     |      | 11.6  |       | 9.5  |   |       |       |    |
| Level of Service, LOS                   |         |         |       |      |       |      |       | B A |      |       | A     |      |   |       |       |    |
| Approach Delay (s/veh)                  |         |         |       |      |       |      |       |     | 11.1 |       |       |      |   |       |       |    |
| Approach LOS                            |         |         |       |      |       |      |       | В   |      |       |       |      |   |       |       |    |

| HCS7 Two-Way Stop-Control Report |                      |                            |                    |  |  |  |  |  |  |  |  |
|----------------------------------|----------------------|----------------------------|--------------------|--|--|--|--|--|--|--|--|
| General Information              |                      | Site Information           |                    |  |  |  |  |  |  |  |  |
| Analyst                          | AJB                  | Intersection               | Miner/Shared Drive |  |  |  |  |  |  |  |  |
| Agency/Co.                       | Eriksson Engineering | Jurisdiction               | Arlington Heights  |  |  |  |  |  |  |  |  |
| Date Performed                   | 01/31/2017           | East/West Street           | Miner Road         |  |  |  |  |  |  |  |  |
| Analysis Year                    | 2016                 | North/South Street         | Shared Driveway    |  |  |  |  |  |  |  |  |
| Time Analyzed                    | 8:15 - 9:15 AM       | Peak Hour Factor           | 0.79               |  |  |  |  |  |  |  |  |
| Intersection Orientation         | East-West            | Analysis Time Period (hrs) | 0.25               |  |  |  |  |  |  |  |  |
| Project Description              | Proposed Conditions  |                            |                    |  |  |  |  |  |  |  |  |



Major Street: East-West

| Vehicle Volumes and Ad                  | justmo  | ents    |         |      |       |      |       |   |      |       |       |      |   |       |       |    |  |
|-----------------------------------------|---------|---------|---------|------|-------|------|-------|---|------|-------|-------|------|---|-------|-------|----|--|
| Approach                                |         | Eastb   | ound    |      |       | West | bound |   |      | North | bound |      |   | South | bound |    |  |
| Movement                                | U       | L       | Т       | R    | U     | L    | Т     | R | U    | L     | Т     | R    | U | L     | Т     | R  |  |
| Priority                                | 1U      | 1       | 2       | 3    | 4U    | 4    | 5     | 6 |      | 7     | 8     | 9    |   | 10    | 11    | 12 |  |
| Number of Lanes                         | 0       | 0       | 1       | 0    | 0     | 0    | 1     | 0 |      | 0     | 0     | 0    |   | 0     | 0     | 0  |  |
| Configuration                           |         |         | Т       |      |       | LT   |       |   |      |       | LR    |      |   |       |       |    |  |
| Volume, V (veh/h)                       |         |         | 187     |      |       | 1    | 105   |   |      | 31    |       | 12   |   |       |       |    |  |
| Percent Heavy Vehicles (%)              |         |         |         |      |       | 3    |       |   |      | 3     |       | 3    |   |       |       |    |  |
| Proportion Time Blocked                 |         |         |         |      |       |      |       |   |      |       |       |      |   |       |       |    |  |
| Percent Grade (%)                       |         |         |         |      |       |      |       |   |      | 0     |       |      |   |       |       |    |  |
| Right Turn Channelized                  |         | Ν       | 10      |      |       | Ν    | 10    |   |      | Ν     | lo    |      |   | Ν     | lo    |    |  |
| Median Type/Storage                     |         |         |         | Undi | vided |      |       |   |      |       |       |      |   |       |       |    |  |
| Critical and Follow-up H                | eadwa   | iys     |         |      |       |      |       |   |      |       |       |      |   |       |       |    |  |
| Base Critical Headway (sec)             |         |         |         |      |       | 4.1  |       |   |      | 7.1   |       | 6.2  |   |       |       |    |  |
| Critical Headway (sec)                  |         |         |         |      |       | 4.13 |       |   |      | 7.13  |       | 6.23 |   |       |       |    |  |
| Base Follow-Up Headway (sec)            |         |         |         |      |       | 2.2  |       |   |      | 3.5   |       | 3.3  |   |       |       |    |  |
| Follow-Up Headway (sec)                 |         |         |         |      |       | 2.23 |       |   |      | 3.53  |       | 3.33 |   |       |       |    |  |
| Delay, Queue Length, ar                 | nd Leve | el of S | Service | e    |       |      |       |   |      |       |       |      |   |       |       |    |  |
| Flow Rate, v (veh/h)                    |         |         |         |      |       | 1    |       |   |      |       | 54    |      |   |       |       |    |  |
| Capacity, c (veh/h)                     |         |         |         |      |       | 1270 |       |   |      |       | 601   |      |   |       |       |    |  |
| v/c Ratio                               |         |         |         |      |       | 0.00 |       |   |      |       | 0.09  |      |   |       |       |    |  |
| 95% Queue Length, Q <sub>95</sub> (veh) |         |         |         |      |       | 0.0  |       |   |      |       | 0.3   |      |   |       |       |    |  |
| Control Delay (s/veh)                   |         |         |         |      |       | 7.8  |       |   |      |       | 11.6  |      |   |       |       |    |  |
| Level of Service, LOS                   |         |         |         |      | A     |      |       | В |      |       |       |      |   |       |       |    |  |
| Approach Delay (s/veh)                  |         | 0.1     |         |      |       |      |       |   | 11.6 |       |       |      |   |       |       |    |  |
| Approach LOS                            |         |         |         |      |       |      |       |   |      | В     |       |      |   |       |       |    |  |

Copyright © 2017 University of Florida. All Rights Reserved.

| HCS7 Two-Way Stop-Control Report |                      |                            |                    |  |  |  |  |  |  |
|----------------------------------|----------------------|----------------------------|--------------------|--|--|--|--|--|--|
| General Information              |                      | Site Information           |                    |  |  |  |  |  |  |
| Analyst                          | AJB                  | Intersection               | Miner/Shared Drive |  |  |  |  |  |  |
| Agency/Co.                       | Eriksson Engineering | Jurisdiction               | Arlington Heights  |  |  |  |  |  |  |
| Date Performed                   | 01/31/2017           | East/West Street           | Miner Road         |  |  |  |  |  |  |
| Analysis Year                    | 2016                 | North/South Street         | Shared Driveway    |  |  |  |  |  |  |
| Time Analyzed                    | 3:00 - 4:00 PM       | Peak Hour Factor           | 0.61               |  |  |  |  |  |  |
| Intersection Orientation         | East-West            | Analysis Time Period (hrs) | 0.25               |  |  |  |  |  |  |
| Project Description              | Proposed Conditions  |                            |                    |  |  |  |  |  |  |



Major Street: East-West

| Vehicle Volumes and Ad                  | ljustmo | ents      |         |   |    |           |     |    |            |      |      |      |            |    |    |    |
|-----------------------------------------|---------|-----------|---------|---|----|-----------|-----|----|------------|------|------|------|------------|----|----|----|
| Approach                                |         | Eastbound |         |   |    | Westbound |     |    | Northbound |      |      |      | Southbound |    |    |    |
| Movement                                | U       | L         | Т       | R | U  | L         | Т   | R  | U          | L    | Т    | R    | U          | L  | Т  | R  |
| Priority                                | 1U      | 1         | 2       | 3 | 4U | 4         | 5   | 6  |            | 7    | 8    | 9    |            | 10 | 11 | 12 |
| Number of Lanes                         | 0       | 0         | 1       | 0 | 0  | 0         | 1   | 0  |            | 0    | 0    | 0    |            | 0  | 0  | 0  |
| Configuration                           |         |           | Т       |   |    |           | Т   |    |            |      | LR   |      |            |    |    |    |
| Volume, V (veh/h)                       |         |           | 138     |   |    |           | 111 |    |            | 51   |      | 10   |            |    |    |    |
| Percent Heavy Vehicles (%)              |         |           |         |   |    |           |     |    |            | 3    |      | 3    |            |    |    |    |
| Proportion Time Blocked                 |         |           |         |   |    |           |     |    |            |      |      |      |            |    |    |    |
| Percent Grade (%)                       |         |           |         |   |    |           |     | 0  |            |      |      |      |            |    |    |    |
| Right Turn Channelized                  |         | No        |         |   | No |           |     | No |            |      | No   |      |            |    |    |    |
| Median Type/Storage                     |         | Undivided |         |   |    |           |     |    |            |      |      |      |            |    |    |    |
| Critical and Follow-up H                | eadwa   | iys       |         |   |    |           |     |    |            |      |      |      |            |    |    |    |
| Base Critical Headway (sec)             |         |           |         |   |    |           |     |    |            | 7.1  |      | 6.2  |            |    |    |    |
| Critical Headway (sec)                  |         |           |         |   |    |           |     |    |            | 7.13 |      | 6.23 |            |    |    |    |
| Base Follow-Up Headway (sec)            |         |           |         |   |    |           |     |    |            | 3.5  |      | 3.3  |            |    |    |    |
| Follow-Up Headway (sec)                 |         |           |         |   |    |           |     |    |            | 3.53 |      | 3.33 |            |    |    |    |
| Delay, Queue Length, ar                 | nd Leve | el of S   | Service | e |    |           |     |    |            |      |      |      |            |    |    |    |
| Flow Rate, v (veh/h)                    |         |           |         |   |    |           |     |    |            |      | 100  |      |            |    |    |    |
| Capacity, c (veh/h)                     |         |           |         |   |    |           |     |    |            |      | 533  |      |            |    |    |    |
| v/c Ratio                               |         |           |         |   |    |           |     |    |            |      | 0.19 |      |            |    |    |    |
| 95% Queue Length, Q <sub>95</sub> (veh) |         |           |         |   |    |           |     |    |            |      | 0.7  |      |            |    |    |    |
| Control Delay (s/veh)                   |         |           |         |   |    |           |     |    |            |      | 13.3 |      |            |    |    |    |
| Level of Service, LOS                   |         |           |         |   |    |           |     |    |            |      | В    |      |            |    |    |    |
| Approach Delay (s/veh)                  |         |           |         |   |    |           |     |    | 13.3       |      |      |      |            |    |    |    |
| Approach LOS                            |         |           |         |   |    |           |     | В  |            |      |      |      |            |    |    |    |